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Abstract. We begin with a functional reactive programming (FRP)
model in which every program is viewed as a signal function that con-
verts a stream of input values into a stream of output values. We observe
that objects in the real world – such as a keyboard or sound card – can
be thought of as signal functions as well. This leads us to a radically
different approach to I/O: instead of treating real-world objects as being
external to the program, we expand the sphere of influence of program
execution to include them within. We call this virtualizing real-world
objects. We explore how virtual objects (such as GUI widgets) and even
non-local effects (such as debugging and random number generation) can
be handled in the same way.

The key to our approach is the notion of a resource type that assures
that a virtualized object cannot be duplicated, and is safe. Resource
types also provide a deeper level of transparency: by inspecting the type,
one can see exactly what resources are being used. We use arrows, type
classes, and type families to implement our ideas in Haskell, and the
result is a safe, effective, and transparent approach to stream-based I/O.

Keywords: Functional Programming, Arrows, Functional Reactive
Programming, Stream Processing, Haskell, Unique Types, I/O.

1 Introduction

Every programming language has some way of communicating with the outside
world. Usually we refer to such mechanisms as input/output, or I/O. In most
imperative languages the mechanisms have effects almost entirely outside the
program, serving a purpose typically unrelated to the internal computation of
an answer to the program. In Haskell, programs engage in I/O by using the IO
monad [20,19]. An advantage of Haskell is that we can determine from the type
of a function whether or not it is engaged in I/O – if any one part of a program
is, then the type of the whole program reflects this. The monadic framework
assures us that the overall program is well defined, and in particular, that the
I/O operations are executed in a deterministic, sequential manner. However,
even in Haskell, the IO monad is “special” compared to other monads. I/O
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commands often represent an awkward disconnect between the internal execution
of a program and the objects, devices, and protocols of the real world.

In this paper, we take a different approach. Instead of using an imperative or
even monadic basis for overall program execution, we use arrows [13]. Specifi-
cally, we assume that a program is a signal function having the (over-simplified
for now) type SF inp out , where both the input and output are time-varying
signals: inp is the type of the instantaneous values of the input, and out is the
type of the instantaneous values of the output. Just as IO is a monad, SF is an
arrow, and like a monad, the arrow framework composes program components
in a way that assures us that the streams are well-defined and that I/O is done
in a deterministic, sequential manner.

This approach is the basis for arrow-based versions of functional reactive pro-
gramming (FRP), such as Yampa [12,3] (which has been used for animation,
robotics, GUI design, and more), Nettle [23] (for networking), and Euterpea [11]
(for audio processing and sound synthesis). In fact, our work was motivated by
Euterpea, and in this paper we use examples from that domain: synthesizers,
speakers, keyboards, and MIDI devices.1

Our research is based on three insights. First, we observe that objects and
devices in the real world can also be viewed as signal functions. For example, a
MIDI keyboard takes note events as input and generates note events as output.
Similarly, a speaker takes a signal representing sound as input and produces no
output, and a microphone produces a sound signal as output while ignoring its
input. So it would seem natural to simply include these signal functions as part of
the program – i.e. to program with them directly and independently rather than
merge everything together as one input and one output for the whole program.
In this sense, the real-world objects are being virtualized for use in the program.

A major problem with this approach is that one could easily duplicate one
of these virtualized objects – after all, they are just values – which would cause
the semantics of the program to become unclear. For example, how does a single
concrete device handle the multiple event streams that would result from its vir-
tualized duplicates? This leads to our second insight, namely that the uniqueness
of signal function can be realized at the type level. In particular, we introduce
the notion of a resource type to ensure that there is exactly one signal function
that represents each real-world device.

Our final insight is that many unsafe functions can be treated as unique signal
functions as well. Examples include GUI widgets, random number generators,
and “wormholes” (mutable variables that are written to at one point in a pro-
gram and safely read from at another).

The advantages of our approach include:

1. Virtualization. I/O devices can be treated conveniently and independently
as signal functions that are just like any other signal function in a program.
I/O is no longer a special case in the language design.

1 MIDI = Musical Instrument Digital Interface, a standard protocol for communication
between electronic instruments and computers.
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2. Transparency. From the type of a signal function, we can determine imme-
diately all of the resources that it consumes. In particular, this means that
we know all the resources that a complete program uses (with monads, all
we know is that some kind of I/O is being performed).

3. Safety. As long as each resource is uniquely assigned, a signal function en-
gaged in I/O or non-local effects is safe – despite the side effects, equational
reasoning is preserved.

4. Modularity. Certain non-local effects – the lack of which is often cited as a
lack of moduarity in functional languages – can be handled safely.

5. Extensibility. A user can define his or her own resource type and signal
function that capture a new I/O device or some kind of non-local effect.

In the remainder of this paper we first introduce arrow syntax and the basis of
our language design. In Section 3, we present our main ideas and the purpose of
resource types and then show the type inference rules for them in Section 4. We
next work through a number of examples in Section 5 before delving into the
implementation details in Section 6. Finally, we discuss limitations and future
work in Section 7 and related work in Section 8.

2 A Signal-Processing Language

The simplest way to understand our language is to think of it as a language for
expressing signal processing diagrams. We refer to the lines in such a diagram as
signals, and the boxes (that convert one signal into another) as signal functions.
Conceptually, signals are continuous, time-varying quantities, but, they can also
be streams of events.

For example, this very simple diagram has two signals, an input x and an
output y, and one signal function, sigfun :

sigfun xy

This is written as a code fragment in our framework as:

y ← sigfun −≺ x

using Haskell’s arrow syntax [18]. The above program fragment cannot appear
alone, but rather must be part of a proc construct, much like a do construct for
monads. The expression on the left must be a variable, whereas the expression
on the right can be any well-typed expression that matches the signal function’s
input type. Signal functions such as sigfun have a type of the form SF T1 T2,
for some types T1 and T2; subsequently, x must have type T1 and y must have
type T2. Although signal functions act on signals, the arrow notation allows one
to manipulate the instantaneous values of the signals. For example, here is a
definition for sigfun that integrates a signal that is one greater than its input:



230 D. Winograd-Cort, H. Liu, and P. Hudak

sigfun :: SF Double Double
sigfun = proc x → do

y ← integral −≺ x + 1
returnA−≺ y

The first line declares sigfun to be a signal function that converts a time-varying
value of type Double into a time-varying value of type Double. The notation
“proc x → do...” introduces a signal function, binding the name x to the
instantaneous values of the input. The third line adds one to each instantaneous
value and sends the resulting signal to an integrator, whose output is named y.
Finally, we specify the output by feeding y into returnA, a special signal function
that returns the result.

Streams of Events. With respect to I/O, continuous signals can be useful in
many contexts, such as the position of a mouse (as input to a program) or the
voltage to a robot motor (as output from a program). However, there are many
applications where instead we are interested in streams of events. We represent
event streams in our language as continuous signals that only contain data at
discrete points in time. A signal that periodically carries information of some
type T has type Event T , whose values are either NoEvent or Event x , where
x :: T .2 For example, a signal function that converts an event stream carrying
values of type M1 into an event stream carrying values of type M2 has type
SF (Event M1) (Event M2).

3 Resource Types

The Problem. As mentioned earlier, we wish to treat I/O devices as signal
functions. Consider, for example, a MIDI sound synthesizer with type:

midiSynth :: SF (Event Notes) ()
midiSynth takes a stream of Notes3 events as input, synthesizes the appropriate
sound of those simultaneous notes, and returns unit values. Now consider this
code fragment:

← midiSynth −≺ notes1

← midiSynth −≺ notes2

We intend for midiSynth to represent a single real-world device, but here we
have two occurrences – so what is the effect? Are the event streams notes1 and
notes2 somehow interleaved or non-deterministically joined together?

Likewise, suppose randomSF is intended to be a random number generator
initialized with a random seed from the OS:

randomSF :: SF () Double

2 The name Event is overloaded as both the type and data constructor.
3 The Notes type represents a set of simultaneously sounding notes such as a chord

or just a single note.
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Now consider this code fragment:

rands1 ← randomSF −≺ ()
rands2 ← randomSF −≺ ()

What is the relationship between rands1 and rands2? Do they share the same
result, or are they different? If they are the same, what if we want them to be
different?

A Solution. Our solution to these problems consists of four parts. First, to
prevent duplication of signal functions, we introduce the notion of a resource
type. There may be many resource types in a program, and, as we shall see, the
user can easily define new ones. For example, in the cases above, we introduce
the resource types MidiSynthRT and RandomRT (by convention, we always use
RT as the suffix for resource type names).

Second, to keep track of resource types, we introduce three type-level con-
structors: Empty , S and ∪. Empty is the empty set of resource types; the type
S MidiSynthRT is the singleton set containing only MidiSynthRT ; and the bi-
nary operator ∪ constructs the union of two sets of resource types.

Third, we add a “phantom” type parameter to each signal function that cap-
tures the set of resource types that it uses. A signal function of type SF r a b
accesses the resources represented by r , while converting a signal of type a into
a signal of type b. Following the examples above, this leads to:

midiSynth :: SF (S MidiSynthRT ) (Event Notes) ()
randomSF :: SF (S RandomRT) () Double

Finally, to facilitate working with resource types, we provide three functions to
convert monadic I/O actions into signal functions tagged with the appropriate
resource type:

source :: IO c → SF (S r) () c
sink :: (b → IO ())→ SF (S r) b ()
pipe :: (b → IO c) → SF (S r) b c

In each case, the resultant signal function has a singleton resource type because
it is expected to be applied to a monadic I/O action of a single I/O device, thus
consuming a single resource.

For event-based signal functions (as described in Section 2) we provide three
analagous functions: sourceE , sinkE , and pipeE with the expected types.

Running Examples. Continuing with our running examples, suppose that:
midiSynthM :: Notes → IO () is the monadic action that sends a set of notes to
the synthesizer. We can then define midiSynth as follows:

data MidiSynthRT
midiSynth :: SF (S MidiSynthRT ) (Event Notes) ()
midiSynth = sinkE midiSynthM
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Note that MidiSynthRT is an empty data type – all we need is the type name –
and that midiSynth is an event-based signal function.

Similarly, although randomSF does not access an I/O device, it is a source of
non-local effects from the OS. We can define it from scratch using the randomIO ::
IO Double function from Haskell’s Random library:

data RandomRT
randomSF :: SF (S RandomRT ) () Double
randomSF = source randomIO

We treat randomSF as a continuous signal function, and its range, inherited
from randomIO , is the semi-closed interval [0, 1).

Redefining the Arrow Class. Our key technical result is that, because we
are using arrows, we can now re-type each of the combinators in the Arrow class
in such a way that the problematical code fragments given earlier will not type
check. The details of how this is done are described in the next Section, but for
now the key intuition is that whenever two signal functions, say sf 1 :: SF r1 a b
and sf 2 :: SF r2 b c are composed, we require that r1 and r2 be disjoint –
otherwise, they may compete for the same resource. Both of the problematical
code fragments given earlier fall into this category. For example:

← midiSynth −≺ notes1

← midiSynth −≺ notes2

is essentially the composition of two instances of midiSynth – but each of them
has the same set of resource types, namely S MidiSynthRT ; thus they are not
disjoint, and not well typed. One way to fix this is to explicitly merge notes1

and notes2:

← midiSynth −≺ noteMerge notes1 notes2

Now there is one occurence of midiSynth , and all is well.
The problematical example involving random numbers leads to a more inter-

esting result if we wish to have two independent random number generators. We
achieve this by defining two different resource types, and two different versions
of randomSF :

data RandomRT 1

data RandomRT 2

randomSF 1 :: SF (S RandomRT 1) () Double
randomSF 1 = source randomIO
randomSF 2 :: SF (S RandomRT 2) () Double
randomSF 2 = source randomIO

A slight variation of the problematical code yields the desired well-typed result:
rands1 ← randomSF 1 −≺ ()
rands2 ← randomSF 2 −≺ ()

(Because each element produced by randomIO is independently random, mul-
tiple calls will not interfere with each other. Therefore, we can use alternating
calls to randomIO to produce two independent random streams.)
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(arr)
� E : α → β

� arr E : SF ∅ α β

(first)
� E : SF τ α β

� first E : SF τ (α, γ) (β, γ)

(>>>)

� E1 : SF τ ′ α β
� E2 : SF τ ′′ β γ

∅ = τ ′ ∩ τ ′′

τ = τ ′ ∪ τ ′′

� E1 >>> E2 : SF τ α γ

(loop)
� E : SF τ (α, γ) (β, γ)

� loop E : SF τ α β

(init)
� E : α

� init E : SF ∅ α α

(|||)

� E1 : SF τ ′ α γ
� E2 : SF τ ′′ β γ

τ = τ ′ ∪ τ ′′

� E1|||E2 : SF τ (α + β) γ

Fig. 1. Resource Type Inference Rules

4 Type Inference Rules

In Haskell, the arrow syntax is translated into a set of combinators that are
captured by the type classes Arrow , ArrowLoop, ArrowChoice , and ArrowInit .
Space limitations preclude a detailed discussion of this translation process (see
[18]). Once translated, the type inference rules that form the basis of our imple-
mentation are shown in Figure 1. There is one rule for each of the operators in
the above type classes. The + symbol denotes the disjoint (i.e. discriminated)
sum type. Set intersection is denoted by ∩ and set union by ∪. Let’s examine
each of the rules in turn:

1. The (arr ) rule states that the set of resource types for a pure function lifted
to the arrow level is empty.

2. The (first) rule states that transforming a signal function using first does
not alter the resource type.

3. The (>>>) rule is perhaps the most important; it states that when two sig-
nal functions are composed, their resource types must be disjoint, and the
resulting resource type is the union of the two.

4. The (loop) rule states that the loop combinator must pass the resource type
unchanged (i.e. as a loop invariant), reflecting the fact that in a recursively
defined signal function, the resource type must be the same at every level of
recursion.

5. The (init) rule states that the set of resource types for the init operator
(from the ArrowInit class) is empty.

6. The final rule is for the choice operator (|||) in the ArrowChoice class. The
resulting resource type is the union of those of its inputs, which are not
required to be disjoint (as discussed in Section 5).

Note that the new signal functions created by init and arr have empty resource
types. But when defining a new signal function, we need a way to specify its
resource type. Thus, we define a function tag , whose type inference rule is:
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(tag)

� E : SF τ α β
τ ⊆ τ ′

� tag E : SF τ ′ α β

The tag function has no run-time effect; it merely adds resource types to the
signal function it acts upon.

5 More Examples

Recursion. A MIDI keyboard is a stream transformer that adds the notes
played on the keyboard in real time to the stream it operates on. It has the
type:

midiKB :: SF (S MidiKBRT ) (Event Notes) (Event Notes)
We can define a signal function that creates an “echo” effect for notes played
on the keyboard by delaying and looping them through the keyboard itself,
attenuating each note by some percentage on each loop:

echo :: SF (S MidiKBRT ) (Double,Double) (Event Notes)
echo = proc (rate, freq)→ do

rec notesOut ← midiKB −≺ notes
notes ← delayt −≺ (1.0/freq , decay rate notesOut)

returnA−≺ notesOut
Note the use of the rec keyword – this will induce the loop rule from Section 4,
and everything is well typed.

echo is a signal function that takes a decay rate and frequency as time varying
arguments and uses them to add an echo to the notes played on the MIDI
keyboard. It uses two helper functions: decay rate ns attenuates each note in ns
by rate, and delayt −≺ (t ,ns) delays each event in ns by the time t .

Conditionals. As discussed earlier, signal function composition requires that
the resource types of the arguments be disjoint. However, for conditionals (i.e.
case statements), the proper semantics is to take the natural union of the re-
source types. Consider the following functions for sending sound data to speakers:

playLeft :: SF (S LeftRT ) Sound ()
playRight :: SF (S RightRT ) Sound ()
playStereo :: SF (S LeftRT ∪ S RightRT ) Sound ()

We can use these to define a signal function for routing sound to the proper
speaker (often called a demultiplexer):

data SpeakerChoice = Left | Right | Stereo
routeSound :: SF (S LeftRT ∪ S RightRT ) (SpeakerChoice ,Sound) ()
routeSound = proc (sc, sound)→ do
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case sc of
Left → playLeft −≺ sound
Right → playRight −≺ sound
Stereo → playStereo −≺ sound

This is well typed, since the case statement in arrow syntax invokes the inference
rule for the choice operator (|||) in the ArrowChoice class given in Section 4.

Virtual Objects. Virtual (GUI) components can be treated the same as con-
crete devices in our framework. In this section we extend the echo example given
earlier to allow the user to pick the decay rate and frequency using GUI “sliders”
and for the echo result to be graphed in real time.

To write this program, we use a different type of signal function than used
previously. The type UISF r a b is designed especially for GUIs, and we can lift
ordinary SF s to UISFs by using the function toUISF . In addition, we use two
built-in GUI functions: (1) Given a range and initial value, hslider creates a hori-
zontal slider; (2) Given some step parameters, a size, and a color, realTimeGraph
creates a graph that varies in real-time as its input changes. We begin by defining
three signal functions for the three widgets we use:

decSlider :: UISF (S DSlider) () Double
freqSlider :: UISF (S FSlider ) () Double
graph :: UISF (S Graph) Double ()
decSlider = title "Decay Rate" $ hSlider (0, 0.9) 0.5
freqSlider = title "Frequency" $ hSlider (1, 10) 10
graph = realtimeGraph (400, 300) 400 20 Black

We also require renderNotes ::SF Empty (Event Notes) Double, a signal function
that transforms our Notes events into sound data. With these functions we can
define our main application:

echoGUI :: UISF (S MidiKBRT ∪ S DSlider ∪ S FSlider ∪ S Graph) () ()
echoGUI = proc → do

rate ← decSlider −≺ ()
freq ← freqSlider −≺ ()
notes ← toUISF echo −≺ (rate, freq)
sound ← toUISF renderNotes −≺ notes

← graph −≺ sound
returnA−≺ ()

Note that the type of echoGUI lists all of the resources that it uses: both the
physical MIDI keyboard as well as the virtual sliders and graph. If one were to
use this module in another GUI, it would be clear from the type what the major
components would be. Figure 2a at the end of this section shows a screenshot of
the program in action.

Wormholes. Resource types allow us to safely perform I/O actions within sig-
nal functions, and although they were designed with physical resources in mind,
the idea extends to other kinds of effectful computation as well. For example,
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(a) echoGUI (b) echoGUIWithDebug

Fig. 2. Screenshots of the GUI signal functions from Section 5 just after a note has
been played on the MIDI keyboard

mutation and direct memory access, techniques that are typically plagued by
difficult-to-find bugs, can be made safe. We begin by defining:

data Wormhole r1 r2 a = Wormhole {whitehole :: SF (S r1) () a,
blackhole :: SF (S r2) a ()}

makeWormhole :: a →Wormhole r1 r2 a
makeWormhole takes an initial value for the hidden mutable variable and returns
a pair of signal functions, the first for reading and the second for writing, with
each independently typed.

Continuing with our echo example from previous sections, suppose we want to
add debugging information. There were two values we created in echo – notesOut
and notes – but we only return the former. However, if we try to change echo
to return both note streams, then we need to adjust echoGUI and any other
functions that rely on echo to match. So instead, we use a wormhole:

wormhole :: Wormhole DebugW DebugB (Event Notes)
wormhole = makeWormhole Nothing
echo :: SF (S MidiKBRT ∪ S DebugB) (Double,Double) (Event Notes)
echo = proc (rate, freq)→ do

rec notesOut ← midiKB −≺ notes
notes ← delayt −≺ (1.0/freq , decay rate notesOut)

← blackhole wormhole −≺ notes
returnA−≺ notesOut

The set of resource types for echo changes to include S DebugB ; the set of
resource types for echoGUI changes similarly, but its implementation remains
the same.

Now, we can define a new echoGUI that uses the debug info. Because of the
nature of signal functions, this is quite easy:

debugGraph :: UISF (S DebugGraph) Double ()
debugGraph = title "Debug" $ realtimeGraph (400, 300) 400 20 Red
echoGUIWithDebug = proc → do



Virtualizing Real-World Objects in FRP 237

← echoGUI −≺ ()
debugVal ← toUISF (whitehole wormhole)−≺ ()
rendered ← toUISF renderNotes −≺ debugVal

← debugGraph −≺ rendered
returnA−≺ ()

Figure 2b shows a screenshot of the program in action.

6 Implementation

Implementing Resource Types. To implement resource types in Haskell we
need a way to represent sets of resource types, integrate them appropriately
with our signal functions, and make them consistent with the type inference
rules given earlier. Our implementation is inspired by Haskell’s HList library
[14] for heterogeneous lists.

We lack the space to show the complete code, but here we show the most
relevant type class, Disjoint :

class Disjoint xs ys
instance Disjoint Empty ys
instance (NotElemOf x ys HTrue)⇒ Disjoint (S x ) ys
instance (Disjoint xs1 ys ,Disjoint xs2 ys)⇒ Disjoint (xs1 ∪ xs2) ys

Disjoint s1 s2 declares that s1 and s2 are disjoint sets (of resource types). The
first instance of the Disjoint class declares that the empty set is disjoint from all
other sets. The second instance says that if x is not an element of ys , then the
singleton set containing x is disjoint from ys . And the final instance says that if
both xs1 and xs2 are disjoint from ys , then their union is also disjoint from ys .

Re-Typing the Arrow Operators. We now have a method to represent sets
of types as well as type classes for combining them. What remains is to use these
types in the typing of the arrow operators, as we did in Section 4.

class Arrow a where
arr :: (b → c)→ a Empty b c
first :: a r b c → a r (b, d) (c, d)
(>>>) :: (Disjoint r1 r2,Union r1 r2 r3)⇒ a r1 b c → a r2 c d → a r3 b d
tag :: Subset r1 r2 ⇒ a r1 b c → a r2 b c

arr and first are easily adapted, as the resource types do not actually affect
their behavior. The (>>>) operator is more complex as it needs to perform a
disjoint union on the resource types of its arguments. The Disjoint type class
from the previous section assures the arguments are well-typed, and the Union
type class behaves like the ∪ operator except that it simplifies degenerate cases
like r ∪ Empty to just r . Lastly, we add the tag operator to the class as well.

Monadic Signal Functions. With the types prepared, we can instantiate the
Arrow class. We begin with a standard implementation of a signal function, such
as from Yampa [15], but with an additional resource type parameter:
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data SigF r a b = SigF {sfFunction :: a → (b,SigF r a b)}
Here, a signal function consumes a value of its input type and produces a value
of its output type along with a new function for the next input value.

However, this definition does not allow us to perform monadic IO actions
within the signal function. Although our newly adopted model of program ex-
ecution is based on signal functions, we still have to implement everything in
Haskell, which is based on monadic I/O. To address this, we add a monad pa-
rameter to the signal function data type. This leads to the following design:

data SFM m r a b = SFM {sfmFun :: a → m (b,SFM m r a b)}
Note that this is the automaton arrow transformer specialized to the Kleisli
arrow, with an added resource type parameter. The instances for Arrow , etc.
follow directly. For example, for the Arrow class:

instance Arrow (SFM m) where
arr f = SFM h where h x = return (f x ,SFM h)
first (SFM f ) = SFM (h f )

where h f (x , z ) = do (y,SFM f ′)← f x
return ((y, z ),SFM (h f ′))

SFM f >>> SFM g = SFM (h f g)
where h f g x = do (y,SFM f ′) ← f x

(z , SFM g ′)← g y
return (z ,SFM (h f ′ g ′))

tag (SFM f ) = SFM h where h x = do (y, sf ′)← f x
return (y, tag sf ′)

At this point, the astute reader may guess the definition of SF that we introduced
in Section 3:

newtype SF = SFM IO

Auxiliary Functions. Now that we have a complete description of SF , we can
easily show the definitions of source, sink , and pipe from Section 3:

source f = SF h where h = f >>= return ◦ (λ x → (x ,SF h))
sink f = SF h where h x = f x >> return ((),SF h)
pipe f = SF h where h x = f x >>= return ◦ (λ x → (x ,SF h))

7 Limitations and Future Work

Reusing Resource Types. The benefits of resource types rely on their proper
assignment to actual resources, which is not something we can enforce. Even
assuming that the user marks every appropriate signal function with a resource
type, he or she may still accidentally use the same resource type for different
signal functions that don’t share a resource. This will not cause a program to
be unsafe, but it might prevent perfectly safe programs from type-checking.
Alternatively (and more dangerously), the user could use different resource types
for signal functions that access the same resource. This would allow one to use
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the same resource multiple times without the type-checker complaining. We have
no easy way to detect or dissuade this behavior; we simply demand that the
programmer take care when assigning resource types.

We should point out that this “flaw” is also a “feature,” in that it is what al-
lows us to instantiate the two independent random number generators described
in Section 3. In general, if two signal functions will not interfere with each other,
even if they access the same resource, then they can have different resource types.

Dynamically Created Types. It is very likely, especially when dealing with
virtual objects like widgets, that one would want to create a dynamic number of
signal functions each with its own resource. For example, a program could present
some variable number of sliders to a user depending on user input. However,
despite the fact that any number of signal functions can be created, only the
limited number of types declared at compile time are available as resource types.

Of course, one could create a compound signal function that displays an ar-
bitrary number of sliders yet only has one resource type. Although this is a
practical way to deal with the problem, it reduces the effectiveness of resource
typing, so we are exploring alternative solutions.

Type Explosion. Although resource types provide an elegant means to man-
aging resources, lengthy programs making use of many resources can become
unwieldy. Ideally, we would have some way to hide particular “sets” of types
from being displayed, so that, for example, a fully-used wormhole’s types would
not appear in the signal function’s type. Currently, the best way to do this is to
group the set of unwanted resource types into a type synonym like so:

type ExtraRTs = S Blackhole1 ∪ S Whitehole1 ∪ S Blackhole2 ∪ ...
mySF :: SF (S Resource1 ∪ S DebugB ∪ ExtraRTs) a b

Here, mySF uses Resource1 and a debugging black hole and hides the rest of
its internal resource types in ExtraRTs. However, a more desirable method to
achieve this would be to have locally-scoped types that could only be used with
similarly scoped signal functions.

Parallelism and Asynchrony. Because resource types clearly show where par-
ticular resources are being used and assure that resources will not be accidentally
touched in other places, they provide a great setting for safely parallelizing pro-
grams. Furthermore, constructs like wormholes (but made thread-safe) could
provide an easy way for parallel threads to communicate. In addition to paral-
lelism, resource types allow for elegant asynchronous computation. Rather than
the typical parallel synchronous model, where each input correspdons to one out-
put, we can allow slow performing signal functions to run as event-based ones
in separate threads that only supply data when their computations complete.

8 Related Work

The idea of using continuous modeling for dynamic, reactive behavior (now often
referred to as “functional reactive programming”) is due to Elliott, beginning
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with early work on TBAG, a C++ based model for animation [6]. Subsequent
work on Fran (“functional reactive animation”) embedded the ideas in Haskell
[5,9]. The design of Yampa [3,12] adopted arrows as the basis for FRP, an ap-
proach that is used in most of our research today, including Euterpea. The use of
Yampa to program GUI components was explored in [2,1], which relates to our
work in the use of signal functions to represent GUI widgets. So, for example, in
Fruit, a model very similar to our UISF was proposed, but it does not require
resource types. They avoid the problem of reource duplicaton by making their
“widgets” essentially pure functions with well defined but restricted output (e.g.
Picture). Our work allows us to lift this restriction as we address the duplication
problem through resource types. Also related is Elliott’s recent work on Eros [4].

There is a long history of programming languages designed specifically for
audio processing and computer music applications – indeed, the Wikipedia entry
for “Audio Programming Language” currently lists 34 languages, including our
original work on Haskore [10]. Obviously we cannot mention every language.
It is worth noting that, except for our recent work on Euterpea, none of these
efforts attempt to address the safe virtualization of devices.

With regard to types, the idea of linear typing is somewhat similar to our
work. For example, the language Clean [21] has a notion of uniqueness types.
In Clean, when an I/O operation is performed on a device, a value is returned
that represents a new instantiation of that device; this value, in turn, must be
threaded as an argument to the next I/O operation, and so on. This single-
threadedness can also be tackled using linear logic [7]. In fact, various authors
have proposed language extensions to incorporate linear types, such as [24,8].
In contrast, we do not concern ourselves with single-threadedness since we only
have one signal function to represent any particular I/O device. Our focus is on
ensuring that resource types do not conflict.

It seems clear that a language with dependent types, such as Agda [16], could
easily encode the resource type constraints that we showed in this paper. How-
ever, Agda and related proof assistants (Coq, Epigram, etc.) are aimed primarily
at verification, and not general programming as Haskell is.

Separation logic [17,22] is also relevant, in which specifications and proofs
of a program component refer only to the portion of memory used by that
component, and not the entire global state. An extension of this idea might
provide a theoretical basis for our work, although we have yet to explore it.
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