
Latte: A Language, Compiler, and Runtime for
Elegant and Efficient Deep Neural Networks

Leonard Truong
Intel Labs / UC Berkeley, USA

leonard.truong@intel.com

Rajkishore Barik
Intel Labs, USA

rajkishore.barik@intel.com

Ehsan Totoni
Intel Labs, USA

ehsan.totoni@intel.com

Hai Liu
Intel Labs, USA

hai.liu@intel.com

Chick Markley
UC Berkeley, USA

chick@berkeley.edu

Armando Fox
UC Berkeley, USA

fox@cs.berkeley.edu

Tatiana Shpeisman
Intel Labs, USA

tatiana.shpeisman@intel.com

Abstract
Deep neural networks (DNNs) have undergone a surge in
popularity with consistent advances in the state of the art for
tasks including image recognition, natural language process-
ing, and speech recognition. The computationally expensive
nature of these networks has led to the proliferation of imple-
mentations that sacrifice abstraction for high performance.
In this paper, we present Latte, a domain-specific language
for DNNs that provides a natural abstraction for specifying
new layers without sacrificing performance. Users of Latte
express DNNs as ensembles of neurons with connections
between them. The Latte compiler synthesizes a program
based on the user specification, applies a suite of domain-
specific and general optimizations, and emits efficient ma-
chine code for heterogeneous architectures. Latte also in-
cludes a communication runtime for distributed memory
data-parallelism. Using networks described using Latte, we
demonstrate 3-6× speedup over Caffe (C++/MKL) on the
three state-of-the-art ImageNet models executing on an Intel
Xeon E5-2699 v3 x86 CPU.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Code generation, Compilers, Op-
timization

Keywords Deep Learning, Neural Networks, Domain Spe-
cific Language, Compiler, Optimization

1. Introduction
Applications such as image processing, video processing,
and speech recognition have become ubiquitous in modern
computing. This has driven the development of algorithms
that can automatically analyze their content to perform tasks
such as online web search and contextual advertising. Re-
cently, neural networks have demonstrated state-of-the-art
results for the tasks of understanding images, videos, and
speech. Apple Siri, Google Now, Microsoft Cortana, Mi-
crosoft Bing, and Amazon Echo all use deep neural networks
(DNNs) under-the-hood.

Deep neural networks are a class of models that use a
system of interconnected neurons to estimate or approximate
functions. In practice these networks are built with groups of
neurons called layers with an input layer and an output layer
corresponding to inputs and outputs of the function being
estimated. Between the input and output layers are hidden
layers that perform intermediate computation. A neural net-
work architecture describes a neural network configuration
with a specific set of layers.

Advances in deep learning research are largely driven by
the introduction of novel hidden layers and architectures.
Examples of recent advancements in the state of the art that
stem from novel layers and architectures are the Inception
Architecture [44], the PReLU layer [26], and Batch Normal-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

PLDI’16, June 13–17, 2016, Santa Barbara, CA, USA
c© 2016 ACM. 978-1-4503-4261-2/16/06...$15.00

http://dx.doi.org/10.1145/2908080.2908105

209

ization [31]. Developing these new layers and architectures
is a time consuming process that requires large amounts of
computational power and training data.

The demanding computational characteristics of deep
neural networks has lead to the emergence of two dominant
approaches for efficient implementations: high-performance
layer-specific libraries and computational graph engines. Be-
low we summarize them.

• Layer-Specific Libraries: A layer-specific library exposes
a set of functions to perform the computation of various
layer types. Users can compose these functions to con-
struct various network architectures. By restricting the
interface to the computation of specific layers, library
writers can provide highly efficient, specialized imple-
mentations, particularly when mapping to a specific set
of hardware targets. This is the most widely adopted ap-
proach for deep learning frameworks and libraries used
by Caffe [32] and many others [14, 29, 35, 47].

• Computational Graph Engines: Libraries like Theano [10],
CNTK [5], Torch [17], and TensorFlow [4] can be used to
describe neural networks as computation graphs. These
graphs are constructed using nodes that represent generic
operations on n-dimensional arrays typically called ten-
sors. The underlying graph engine is responsible for com-
piling, optimizing, and executing these graphs. This ab-
straction improves programmability by providing a high-
level interface for expressing layers as generic opera-
tions.

These approaches have made at least two key sacrifices
in order to provide the necessary performance to train com-
plex networks. First, both approaches require the user to rep-
resent neural networks using an array programming model
where the network state is encoded using tensors with lay-
ers implemented as functions on these tensors. This allows
implementations to leverage the wide body of work on op-
timizing array programs including techniques such as par-
allelization and vectorization [33]. However, representing a
neural network using an array programming model diverges
from the graphical model typically used to describe neu-
ral network constructs. It places a burden on neural net-
work researchers to derive array programming formulations
of novel layers. Furthermore, a simple array formulation is
typically not enough to achieve the performance necessary to
train these networks. For example, CNTK [5] uses a matrix-
multiplication based formulation for convolution layers. The
reasoning behind this approach relies on significant under-
standing of the target hardware architecture and is described
in detail by Chetlur et al [14]. This demonstrates that even
a graph engine that strives to improve programmability has
failed to prevent architecture specific details from leaking
through the abstraction layer.

The other key missing performance-critical feature in ex-
isting frameworks is the cross layer optimizations. Prior

work in the domains of linear algebra [9] and machine
learning [7] have revealed opportunities for performance im-
provements from kernel fusion. Static layer-specific libraries
are fundamentally unable to perform kernel fusion for layers
because the layer kernels are statically compiled ahead of
time. A graph engine could do this at runtime when process-
ing the computation graph for a network but are faced with
two challenges. First, in practice these graph engines rely on
static kernels to execute computationally expensive nodes,
such as a vendor BLAS implementation for matrix multi-
plication or a static library like cuDNN. When using static
kernels, graph engines are subject to the same limitation
as layer-specific libraries. Second, when using dynamically
compiled kernels, graph engines would require complex de-
pendence analysis to perform fusion.

In this paper, we introduce Latte, a domain-specific lan-
guage (DSL) for deep neural networks. In Latte, a user can
express neural networks as a collection of connected neu-
rons — the same way neural networks are introduced and ex-
plained in courses and textbooks. The language implementa-
tion enforces abstraction by hiding low-level details includ-
ing parallelization, heterogeneous code generation, and op-
timizations from the end-user. We provide examples of ex-
pressing existing layers in Latte to show how this abstrac-
tion facilitates the development of new layers by allowing
researchers to use a graphical representation.

Latte extends the computational graph engine approach
by replacing generic operations on multi-dimensional arrays
with an abstraction specific to neural networks. This allows
users to write neural network layers at a high-level without
architecture specific optimizations. For example, a convo-
lution layer can be succinctly specified as an Ensemble of
neurons with a sparse connection structure. This contrasts
with existing approaches including Torch [3], Caffe [32],
CNTK [5] and cuDNN [14] that all use a matrix-multiply
based implementation of convolution layers.

Under the hood, Latte uses program synthesis and domain-
specific optimizations to execute networks efficiently. Guided
by semantic information provided by the DSL, the Latte
compiler performs cross-layer fusion without complex de-
pendence analysis. The ability to perform cross-layer fusion
contrasts with existing graph engine approaches that are lim-
ited by nodes that rely on static kernel implementations to
do heavy computation. For example, CNTK [37] relies on
static kernels to implement many computation nodes, fun-
damentally limiting their ability to perform cross-layer opti-
mizations.

Our specific contributions are as follows:

• A domain-specific language for expressing neural net-
works as a graph of connected neurons. The language
was designed using a top-down approach to match do-
main expert concepts rather than platform specific de-
tails.

210

• A DSL compiler that synthesizes a program to exe-
cute user-described networks, applies a suite of domain-
specific optimizations, and emits efficient parallel and
vector machine code for heterogeneous architectures.
The DSL was designed to enable the compiler to ex-
ploit cross-layer optimizations resulting in a 16× perfor-
mance improvement on the first three layers of the VGG
network [42] over Caffe [32] on an Intel Xeon E5-2699
v3 x86 CPU with 36 cores.

• A runtime that enables data-parallel training of networks
by dynamically scheduling execution across available
compute units within a node and across nodes in a cluster
and managing synchronization of gradients.

• Performance improvements of 3-6× over Caffe (MKL)
and 15-40× over Mocha.jl [47] on the state-of-the-art
network topologies AlexNet [36], VGG [42], and Over-
Feat [41] on an Intel Xeon E5-2699 v3 x86 CPU with
36 cores. Furthermore, Latte can achieve an additional
2× speedup from the same code base when the CPU is
enhanced with two Intel Xeon Phi 7110P coprocessors.
Finally, we show 84% strong scaling efficiency on a 32
node commodity cluster.

The rest of the paper is organized as follows. In Section 2,
we describe some background on DNNs including terminol-
ogy that will be used throughout the paper. Section 3 de-
scribes the overall language design. Example programs us-
ing Latte are presented in Section 4. Compiler optimizations
and synthesis are described in Section 5. Section 6 describes
the cluster and heterogeneous scheduling runtime. Experi-
mental evaluations are presented in Section 7. We discuss
related work in Section 8 and conclude in Section 9.

2. Background
To assist readers who may not be familiar with neural net-
works and deep learning, we provide a summary of key con-
cepts and terminologies that will be used throughout the pa-
per.

2.1 Neural Networks
In machine learning, the term neural network refers to a fam-
ily of machine learning algorithms that are inspired by the
biological neural networks found in the brain. These net-
works can be used to estimate the output(s) of functions that
can depend on a large number of inputs. Typically, neural
networks are presented as a collection of connected neu-
rons. A connection between neurons indicates that messages
are passed between the two neurons. We can define neurons
as nodes and connections as directed edges to view neural
networks as directed graphs. Networks with cycles in their
graph are called recurrent neural networks (RNNs), while
acyclic networks are called feedforward.

Neurons in a neural network are organized into layers,
as in Figure 1a. The first and last layers are called the input

(a) Fully connected layer (b) Sparsely connected layer

Figure 1: Simple examples of various layer types. Gray
neurons represent input neurons and white neurons represent
output neurons.

and output layers, respectively. Intermediate layers are called
hidden layers, and deep neural networks are those with many
such layers. For example, the AlexNet network [36] has five
convolutional and three fully-connected (described below)
layers, with thousands or hundreds of thousands of neurons
per layer.

2.2 Execution
The execution of a neural network begins with initializing
the input neurons with the current input data. This seeds the
execution of the network by presenting a set of neurons that
have available outputs which are propagated to connected
neurons. A neuron can compute an output once all of its
inputs are available.

2.3 Network Primitives
Neurons are the fundamental unit of neural networks. A
neuron, sometimes called simply a unit, takes in any number
of inputs and computes an output value called an activation.
A neuron is defined by how the output activation is com-
puted. The most common neuron type found in deep neural
networks is the weighted neuron. A weighted neuron multi-
plies each of its inputs by a unique weight, and computes an
output activation as a sum of the weighted inputs. Another
example of a neuron is a max neuron that computes an output
activation as the maximum of its inputs.

Fully connected (FC) layers are found in many classes
of neural networks. In an FC layer, each input neuron is
connected to each output neuron, as shown in Figure 1a. The
output neurons are defined as the weighted neurons.

Convolution layers are similar to FC layers except neurons
are connected to a spatially-local neighborhood of input
neurons. This results in a sparse connection structure shown
in Figure 1b. Also different than in fully connected layers,
certain neurons in a convolution layer share weights.

Pooling layers use a sparse, spatially-local connection
structure, however unlike convolution layers, the neighbor-
hoods typically do not overlap. Pooling layers are commonly

211

inserted to reduce the spatial size of the network, the number
of parameters, and the computational cost.

2.4 Network Architectures
A network architecture describes a specific neural network
using a configuration of connected layers. Many modern
neural network models use sub-architectures as reusable and
composable blocks.

Multi-layer Perceptron (MLP): An example of a simple
network architecture that is capable of approximating uni-
versal functions [28]. MLPs can be described as a sequence
of fully connected layers that perform non-linear transfor-
mations on the input data.

Long Short-term Memory (LSTM): An LSTM [22, 27]
is a more complex, recurrent architecture that has achieved
state of the art results on machine learning tasks includ-
ing handwriting and speech recognition [25]. LSTMs uses
a structure called a memory cell to control vanishing and
exploding gradients when training using back propagation.
A memory cell can be described as an input gate, a neuron
with a self-recurrent connection, a forget gate, and an out-
put gate. The gates modulate the input, output, and internal
signals which allow the memory cell to perform complex in-
teractions with its environment such as forget its previous
state.

2.5 Training
To train neural networks, researchers employ forward and
backward propagation. First, under forward propagation, a
training input is fed through the network to produce out-
put activations. Next, under backward propagation (or sim-
ply back-propagation), the output activations are propagated
backwards through the network to calculate the difference
between the input and output values of each neuron. These
differences are called gradients, which are used to update
the weights of a neuron. In practice, networks are trained on
batches of input items instead of a single input to improve
vectorization and parallelization.

A solver is responsible for coordinating the forward,
backward, and weight update phases of training. It is respon-
sible for solving the minimization problem used to learn the
best parameters for a given dataset. Example solving meth-
ods include stochastic gradient descent [6], RMSProp [45],
and AdaDelta [20].

Large networks can take days or weeks to converge, mo-
tivating distributed training algorithms that expose more op-
portunities for parallelism. Prior work [19, 34] has shown
model and data parallelism as two effective strategies for
parallelizing training in a distributed memory environment.
Data-parallel training replicates the network across multiple
workers, with each worker processing a different batch of in-
puts. Various schemes have been devised for synchronizing
these network instances, including gradient summation [46],
parameter averaging [43], and parameter servers [15]. Model

parallelism partitions a single network across multiple work-
ers (a requirement when a model is too large to fit in memory
on a single node).

3. Latte Language Design
We have developed Latte, a domain-specific language for
DNN programming. Latte is implemented as an extension
to the Julia programming language [11]. A network in Latte
consists of a collection of connected ensembles. An ensem-
ble is a collection of neurons. Ensembles are connected us-
ing a mapping function that specifies the connections be-
tween the neurons in the ensembles. The names neuron, en-
semble, and connection were inspired by the Nengo frame-
work [8]. These language constructs enable the implemen-
tation of standard CNN layers such as InnerProduct, Convo-
lution, Pooling, ReLU, Softmax, Batch Normalization, and
Local Response Normalization, as well as RNN blocks such
as the Gated Recurrrent and Long Short Term Memory units.
We present the definition of Latte’s core types and functions
in Figure 2.

3.1 Neuron
The Neuron type is a base type provided by Latte that
remains abstract and must be sub-typed by the user. All
Neuron sub-types will have four default fields: the neuron’s
output value, its gradient to be back-propagated ∇, a vec-
tor of vectors of input activations inputs, and its gradient
∇input. In addition to these default fields, the user can
specify additional fields for the neuron to represent internal
state. If a user wishes to store information specific to each
item in an input batch, they can mark the field as a Batch
type.

In addition to defining Neuron sub-types, the user must
also specify forward and backward functions with the sig-
natures given in Figure 2. These define how forward and
backward propagation are computed. They each take a user-
defined sub-type of Neuron as their argument. For forward,
the user must write the resulting output value of the neuron
to its value field. For backward, the user must write the re-
sulting gradients to be propagated to ∇inputs. Latte offers
a macro @neuron to help user conveniently define custom
neuron types and their forward and backward functions, and
an example will be given in Section 4.

Latte provides special handling of gradient computation
based on prior work showing neural networks’ resilience
to lossy gradients. Project Adam [15] showed that in cer-
tain cases, lossy weight updates actually improved accuracy
by introducing noise into the training process. When en-
abled, fields specified with∇ in the name will not be subject
to synchronized reductions across threads, instead allowing
threads to update their computed values in place. If the user
does not enable this mode, Latte will perform a normal syn-
chronized reduction incurring a small performance overhead
during back-propagation.

212

type Neuron type Connection type Ensemble{T <: Neuron , N} type Net
value :: Float32 source :: Ensemble neurons :: Array{T, N} ensembles :: Vector{Ensemble}
∇ :: Float32 mapping :: Function connections :: Vector{Connection} ...
inputs :: Vector{Vector} end
∇inputs :: Vector{Vector} end end

end

forward{T <: Neuron }(neuron :: T) # must be user -defined for each custom neuron type T
backward{T <: Neuron }(neuron :: T) # must be user -defined for each custom neuron type T
add_connections(net :: Net , source :: Ensemble , sink :: Ensemble , mapping :: Function)
solve(solver :: Solver , net :: Net)

Figure 2: Core Latte types and functions using Julia syntax [11], where type. . .end defines a struct (or record) type, ::
denotes the type of a field or a variable, {...} encloses type parameters, and <: denotes a sub-typing relationship. We also
follow Julia’s convention of capitalizing the first letter of type names. Vector{Vector} indicates a Vector of Vectors.

3.2 Ensembles
Modern neural network topologies leverage the notion of
collections of neurons which are composed and connected.
Latte provides a built-in type for neuron collections called
Ensemble. The Ensemble type is parameterized by the rank
N of its neuron array and neuron type T, which implies
that all neurons in an ensemble must be of the same type
and hence use the same function to compute an activation.
This uniform activation computation is leveraged by the
compiler for optimizations and explained in detail in Section
5. Alongside the fundamental Ensemble type, Latte provides
two special ensemble types:

ActivationEnsemble: Applying an activation function over
each neuron in a collection is a common pattern in neu-
ral networks. Latte provides the ActivationEnsemble con-
struct as an easy way to apply an activation function over
any existing ensemble. Latte will construct a new ensem-
ble with the same dimensions as the input ensemble and
connect them using a one-to-one mapping. By using an
ActivationEnsemble, the user allows Latte to perform the
forward and backward propagation computations in-place.
This contrasts with the default behavior which would allo-
cate a separate memory region for an ensemble’s value.

NormalizationEnsemble: Specifying normalization oper-
ations is often better suited for array- or vector-style oper-
ations on a set of values in the network. Latte provides the
NormalizationEnsemble type to allow the user to specify
generic operations on an array encoding the output values of
an ensemble. The output of a NormalizationEnsemble will
be identical in shape to the input.

3.3 Connections
Latte provides the built-in function add_connections for
connecting ensembles and neurons. Connecting an ensemble
source to an ensemble sink specifies that the values of the
neurons in source will be used by the neurons in sink. The
mapping function specifies the input values for every neuron
in sink by returning a range of neuron indices in source.

1 @neuron type WeightedNeuron
2 weights :: Vector{Float32}
3 ∇weights :: Vector{Float32}
4 bias :: Vector{Float32}
5 ∇bias :: Vector{Float32}
6 end
7
8 @neuron forward(neuron :: WeightedNeuron) do
9 # perform dot product of weights and inputs

10 for i in 1: length(neuron.inputs [1])
11 neuron.value +=
12 neuron.weights[i] * neuron.inputs [1][i]
13 end
14 # add the bias
15 neuron.value += neuron.bias [1]
16 end
17
18 @neuron backward(neuron :: WeightedNeuron) do
19 # Compute back propagated gradient
20 for i in 1: length(neuron.inputs [1])
21 neuron.∇inputs [1][i] +=
22 neuron.weights[i] * neuron.∇
23 end
24 # Compute weight gradient
25 for i in 1: length(neuron.inputs [1])
26 neuron.∇weights[i] +=
27 neuron.inputs [1][i] * neuron.∇
28 end
29 # Compute bias gradient
30 neuron.∇bias [1] += neuron.∇
31 end

Figure 3: Latte standard library definition of a Weighted-
Neuron

3.4 Network
In Latte, layers are represented as an ensemble of neurons
with a specific connection structure for an input ensemble.
These layers can be composed to create neural networks, de-
fined in Latte with the Net type. Examples of constructing
common neural network layers in Latte can be found in Sec-
tion 4 where we describe the implementation of the Latte
standard library. To construct a network, the user adds en-
sembles to an Net instance and applies connections between
them. Latte provides a routine init that initializes a network
by compiling the network to an executable and allocating re-
quired memory buffers. An initialized network can be passed
to solver routines using the solve interface for training or
used to perform prediction tasks with an existing set of pa-
rameters. Alongside standard layers, Latte provides a num-
ber of built-in solvers as described in Section 2.5. Solvers

213

1 function FullyConnectedLayer(name::Symbol , net::Net ,
input_ens :: AbstractEnsemble , n_outputs ::Int)

2 # Create a vector of `n_outputs ` WeightedNeurons
3 neurons = Array(WeightedNeuron , n_outputs)
4 # Initialize parameters
5 n_inputs = length(input_ens)
6 weights ,∇weights = xavier_init(n_inputs ,n_outputs)
7 bias , ∇bias = zeros(1,n_outputs)
8 # Instantiate each neuron with unique parameters
9 for i in 1: n_outputs

10 neurons[i] = WeightedNeuron(weights[:, i],
11 ∇weights[:, i], bias[:, i], ∇bias[:, i])
12 end
13 # Construct the ensemble
14 fc = Ensemble(net ,name ,neurons ,
15 [Param (:weights ,1.0), Param(:bias ,2.0)])
16 # Connect all source neurons to each sink neuron
17 mapping = (i) -> [1:d for d in size(input_ens)]
18 add_connections(net , input_ens , ip, mapping)
19 fc
20 end

Figure 4: Latte standard library definition of a FullyCon-
nectedLayer. xavier_init refers to the randomized param-
eter initialization scheme using the Xavier algorithm [23].

define an update method that is responsible for updating the
parameters with respect to the gradient.

4. Examples
In this section, we present examples using the Latte language
to define Neuron sub-types, construct layers using Neurons
and Ensembles, and construct networks using layers. These
examples are provided in the Latte standard library.

WeightedNeuron: The WeightedNeuron is a fundamental
building block of artificial neural networks. A Weighted-
Neuron computes its output as a dot-product of its inputs
with a weight vector. This weight vector is a learnable pa-
rameter and can be shared amongst neurons. Weighted neu-
rons can be used to construct fully-connected and convo-
lution layers. Figure 3 shows the code used to define the
WeightedNeuron type in Latte. We begin on line 1 by defin-
ing a Neuron subtype using the @neuron macro and the stan-
dard Julia type definition syntax. For WeightedNeuron, ad-
ditional fields are specified to hold the weight and bias pa-
rameters for the neuron. Next, on lines 8 and 18 we define
forward and backward functions using the @neuron macro
and the Julia do-block syntax.

Fully connected layers: Fully connected layers are con-
structed by connecting an ensemble of WeightedNeurons to
an input ensemble with a simple mapping function. Figure 4
shows the standard library implementation. First, on line 3
we allocate and instantiate an array of WeightedNeurons of
length n_outputs, each with its own unique set of weights.
These neurons are used to construct an ensemble fc on
line 14. Finally, on line 18 we connect each neuron in
input_ensemble to each neuron in fc, and return fc.

Convolution layers: Convolution layers can be described
in Latte using the same constructs as fully connected layers.

1 add_connections(net ,input_ens ,conv ,function(x,y,_)
2 in_x = (x-1)*stride -pad
3 in_y = (y-1)*stride -pad
4 return (in_x +1: in_x+kernel , # kernel width
5 in_y +1: in_y+kernel , # kernel height
6 1: channels) # all input channels
7 end)

Figure 5: Connection structure for a convolution layer en-
coded as a Latte mapping function. It returns a range of neu-
rons in the input ensemble based on the index of a neuron in
conv.

1 function LSTMLayer(name::Symbol ,net::Net ,
input_ensemble :: AbstractEnsemble ,n_outputs ::Int)

2 # Split the input_ensemble into 4 gates
3 for ens in [:ix, C_simx , :fx, :ox]
4 @eval $ens = InnerProductLayer(
5 $net , $input_ensemble , $n_outputs)
6 end
7 # Split the previous output to 4 gates
8 for ens in [:ih, :C_simh , :fh, :oh]
9 @eval $ens = FullyConnectedEnsemble ($net , length

($ input_ensemble), $n_outputs)
10 end
11
12 i = σ(net , +(net , ih, ix))
13 f = σ(net , +(net , fh, fx))
14
15 C_sim = tanh(net , +(net , C_simh , C_simx))
16 f_C = MulEnsemble(net , (n_outputs ,))
17 add_connections(net , f, f_C , (i) -> (i,))
18 C = +(net , *(net , i, C_sim), f_C)
19 add_connections(net , C, f_C , (i) -> (i,);
20 recurrent=true)
21
22 oC = InnerProductLayer(net , C, n_outputs)
23 o = σ(net , +(net , oC, oh, ox))
24 h = *(net , o, tanh(net , C; copy=true))
25
26 # Connect h back to each gate
27 for ens in [ih, C_simh , fh, oh]
28 add_connections(net , h, ens , (i) ->(1:n_outputs ,)

; recurrent=true)
29 end
30 end

Figure 6: Definition of an LSTM unit in Latte. The math
functions σ,+, ∗, tanh construct an ensemble of neurons
to perform the corresponding operation and connects the
inputs. The use of Julia’s @eval allows the inputs to be split
into 4 distinct layers using metaprogramming.

The key differences are in the sharing of weights between
certain neurons (based on their index in the ensemble) and
the use of the sparse connection structure as shown in Fig-
ure 5. This natural, high-level specification contrasts greatly
with the matrix-multiplication based convolution specifica-
tions found in many deep learning frameworks [3, 5, 14, 32].

Long Short-Term Memory Units (LSTM): The Latte im-
plementation of an LSTM unit is shown in Figure 6. It
demonstrates how recurrent connections can be naturally ex-
pressed in Latte. Alongside the WeightedNeuron, the LSTM
unit requires neurons to perform mathematical functions
such as σ, +, ∗, and tanh. We leave out their definitions
for space but they can be found online at the open source

214

1 using Latte
2
3 net = Net(8)
4 data , label = HDF5DataLayer(net , "data/train.txt",
5 "data/test.txt")
6 ip1 = FullyConnectedLayer (:ip1 , net , data , 20)
7 ip2 = FullyConnectedLayer (:ip2 , net , ip1 , 10)
8 loss = SoftmaxLossLayer(:loss , net , ip2 , label)
9

10 params = SolverParameters(
11 lr_policy = LRPolicy.Inv(0.01, 0.0001 , 0.75),
12 mom_policy = MomPolicy.Fixed (0.9),
13 max_epoch = 50,
14 regu_coef = .0005)
15 sgd = SGD(params)
16 solve(sgd , net)

Figure 7: A simple multi-layer perceptron in Latte using a
solver and layers found in the standard library. LRPolicy
and MomPolicy are parameters to the solver.

link provided in Section 9. LSTMs begin by splitting the in-
put into 4 distinct signals. This is done using the for loop on
line 4 which instantiates 4 FullyConnectedLayers. On line 9,
we do a similar process of splitting the output of the mem-
ory cell at the previous time step. These signals are used to
compute the values of the LSTM gates and memory cell. i
encodes the input gate, f encodes the forget gate, C_sim is
the candidate state value, o is the output gate, and h is the
memory cell output.

Multi-layer perceptrons: Figure 7 provides an example of
constructing and training an MLP as described in Section 2.4
using two FullyConnectedLayers. These layers, as well as
an input data layer and a loss layer, are added to a network.
The user then instantiates a solver that is used to train the
network.

5. Latte Compiler
The Latte compiler consumes the user description of a neural
network and produces a compiled binary to perform the ex-
ecution of the network. The compiler has four phases: anal-
ysis, synthesis, optimization, and code generation. During
these phases, Latte uses an intermediate representation that
is a superset of the internal Julia AST. Machine code gener-
ation is handled by the ParallelAccelerator.jl package [30].
In this section, we describe the key components of the Latte
compiler.

5.1 Internal Representation of Networks
User-described networks in Latte trivially map to a data-flow
graph with nodes representing computations and connec-
tions indicating data dependencies. Latte internally repre-
sents the data-flow graph using implicit adjacency lists. The
adjacency lists for neurons in an ensemble can be retrieved
using the mapping function(s) used to connect the ensemble
to its input(s). The implicit adjacency list representation al-
lows Latte to store complex graphs without heavy memory
usage even for networks with billions of neurons and con-
nections.

1 for n = 1: num_neurons
2 for i = 1: num_inputs
3 fc_value[n] += fc_inputs[i,n] * fc_weights[i,n]

⇓
1 for n = 1: num_neurons
2 for i = 1: num_inputs
3 fc_value[n] += fc_inputs[i] * fc_weights[i,n]

Figure 8: FullyConnectedLayer pseudo-code before and af-
ter shared variable analysis. The upper code-block shows the
naive code where each neuron has a different set of inputs
demonstrated by the use of n to index fc_inputs. In the
lower code-block the index n has been dropped because the
compiler has determined that the inputs are shared.

5.2 Analysis of Shared Variables
The Latte compiler uses shared variable analysis on the data-
flow graph to guide code synthesis and optimization. During
this phase, the compiler determines compute nodes in the
data-flow graph that share data dependencies. Shared vari-
ables occur when neurons consume the same input values
and neurons sharing local fields such as parameters. The
Latte compiler leverages this information to improve data
locality and reduce communication overhead in the synthe-
sized code by mapping shared values to the same memory
region. Neurons work together to load shared data instead
of independently reading separate memory regions which
would result in cache capacity conflicts as well as satura-
tion of memory bandwidth. This also results in the runtime
allocating a single shared buffer for inputs, reducing overall
memory consumption.

Analysis of shared values is performed by partitioning the
data-flow graph into ensembles and performing a traversal
that compares dependencies amongst compute nodes within
a partition. Inside an ensemble partition, the compiler com-
pares the adjacency lists of neurons along a dimension. If
this list is uniform across the dimension, the compiler has
determined that the neurons along that dimension can share
the same buffer.

An example of an optimization guided by shared vari-
ables is found during the synthesis of FC layers. In a FC
layer, each neuron in the output ensemble consumes the ac-
tivation of every neuron in the input ensemble. Therefore,
every neuron in the output ensemble can consume the same
shared input vector of activations, as demonstrated in Fig-
ure 8. This optimization improves locality, and enables the
computation to be pattern-matched as a matrix multiplica-
tion. We will discuss pattern matching in further detail in
Section 5.4.

Convolution layers exhibit a more complex connection
structure than FC layers but still exhibit the shared variable
pattern. In a convolution layer, neurons in each output chan-
nel share the same weight values for the filter but are con-
nected to different inputs. Across the output channel dimen-
sion, neurons share the same inputs, but use different filter

215

weights. Latte is able to determine the uniformity of values
across an entire dimension. In this case, Latte drops this di-
mension, allowing the neurons to share the same buffer. As
with FC layers, this shared value optimization enables the
kernel pattern matcher to formulate convolution layers as a
matrix multiplication as well.

5.3 Synthesis
Dataflow: The compiler is responsible for ensuring the in-
put data is available for the computation of a neuron’s output.
The required data dependencies specified by the user are en-
coded in the connection structure of neurons in the data-flow
graph. Latte performs synthesis by traversing the data-flow
graph. Each ensemble has metadata containing information
collected from shared variable analysis and the ensemble
type. In special cases, such as with ActivationEnsembles
or when all neurons share the same input values, Latte does
not perform data-flow synthesis, instead relies on the run-
time mapping of the input pointers to the memory regions
containing the appropriate values. In the general case, Latte
assumes that the runtime has allocated a buffer for the input
values of each neuron in an ensemble. Then, for each con-
nected input (which we will call a source) to a neuron (which
we will call a sink), Latte emits a data copy task to move that
source’s output value into the allocated input buffer for the
sink. The synthesis of these data copy tasks is done by gen-
erating a loop nest that copies the inputs for each neuron in
the current ensemble. This is also guided by shared variable
analysis, which allows Latte to drop dimensions in the syn-
thesized loop nest when inputs are shared along a certain di-
mension. For example, along the output channel dimension
of a convolution layer, each filter group shares the same in-
put values. The runtime will map the inputs of these neurons
to the same shared buffer, so Latte will only copy data into
the shared buffer once instead of for each group along that
dimension.

Compute: By definition of ensemble as a homogeneous
collection of neurons, the function used to compute the out-
put of each neuron in the ensemble is identical. In Latte,
users define neuron functions using references to neuron
fields, which naturally maps to an array-of-structs (AoS) rep-
resentation. However, using an AoS representation would
prevent Latte from effectively generating vectorizable code.
For example, when performing data-flow copies, Latte it-
erates over the output values of a neuron in an ensemble,
but ignores any other fields of that neuron. To enable effi-
cient vectorization, the Latte compiler performs a transfor-
mation pass on the neuron function to convert references to
reflect a struct-of-arrays (SoA) layout. During this transfor-
mation pass, the compiler also updates indexing expressions
on fields that have been determined to be shared along a di-
mension. Next, the compiler synthesizes a set of nested for-
loops by calling the neuron function for each neuron in an
ensemble.

1 # Convolution Layer
2 for c = 1:n_filters , y = 1:height , x = 1:width
3 for i in 1: n_inputs
4 conv1[x, y, c] += conv1input[i, x, y] *

conv1weights[i, c]
5 # ReLU Layer performed in place
6 for c = 1:n_filters , y = 1:height , x = 1:width
7 conv1[x, y, c] = max(conv1[x, y, c], 0.0)
8 # Pooling layer
9 for c = 1:n_filters , y = 1: height/2, x = 1:width

10 # Pooling Layer data copy
11 for p = 1:2, q = 1:2
12 poolinput[p*2+q, x, y, c] = conv1[x+q, y+p, c]
13 maxval = -Inf
14 for i = 1: pool_size
15 maxval = max(poolinput[i, x, y, c], maxval)
16 pool1[x, y, c] = maxval

Figure 9: Pseudo-code representing the synthesized code for
a Convolution, ReLU, and Pooling layer.

Distributed Memory Communication: For synchronizing
model replicas when using distributed data parallelism, Latte
uses gradient summation for two reasons: First, gradient
summation preserves the semantics of optimization algo-
rithms with an increased batch size. Second, it allows us to
synthesize communication code that overlaps with the back-
propagation computation. After synthesizing a section of the
code for the back-propagation of one ensemble, Latte inserts
a call to the runtime to perform an asynchronous reduction of
the computed gradient between workers. That is, as soon as a
gradient is computed, Latte initiates asynchronous commu-
nication with other workers, and then continues computing
more gradients. This reduces the overall cost of inter-node
communication by overlapping it with computation.

5.4 Optimizations
We provide the pseudo-code in Figure 9 as an example to
guide the reader through the various compiler optimizations
employed by Latte. It represents the synthesized computa-
tion of a convolution layer, a ReLU layer, and a pooling
layer. For simplicity, we leave out the data copy for the
convolution layer, as well as the outermost loop over batch
items.

5.4.1 Intra-Layer Optimizations
Library Kernel Pattern Matching: Latte implements a
pattern matching pass to transform synthesized code into
library calls, when possible. This enables Latte to leverage
highly efficient implementations from vendors for specific
kernels. Currently Latte only implements replacement of
matrix multiplication, a common pattern found in the synthe-
sized code for many neural networks, with a call to MKL’s
sgemm [2]. In our example, Latte transforms the convolution
layer computation on lines 2-4 of Figure 9 into the following
GEMM call1 by flattening the x and y loops:

1 Note the gemm call uses a simplified interface gemm(transA, transB, m,
n, k, A, B, C) without arguments lda, ldb, ldc, alpha, beta.

216

1 for y_tile in 1: TILE_SIZE:height
2 gemm('T', 'N', TILE_SIZE*width , n_filters ,

n_inputs , conv1input[n], conv1weights ,
3 conv1[n])
4 for y_tile in 1: TILE_SIZE:height
5 for c = 1:n_filters ,
6 y = y_tile:y_tile+TILE_SIZE ,
7 x = 1:width
8 conv1[x, y, c] = max(conv1[x, y, c], 0.0)
9 for y_tile in 1: TILE_SIZE:height /2

10 for c = 1:n_filters ,
11 y = y = y_tile:y_tile+TILE_SIZE ,
12 x = 1:width
13 for p = 1:2, q = 1:2
14 poolinput[p*2+q, x, y, c] = conv1[x+q, y+p, c]
15 maxval = -Inf
16 for i = 1: pool_size
17 maxval = max(poolinput[i, x, y, c], maxval)
18 pool1[x, y, c] = maxval

Figure 10: Code after tiling has occurred. Notice the differ-
ence in loop lengths on lines 4 and 8 as well as the fusion
preventing dependency on line 13.

1 gemm('T', 'N', height * width , n_filters , n_inputs ,
conv1input , conv1weights , conv1)

Latte currently pattern-matches for matrix-multiplication
only, however this is not a fundamental limitation. Extending
Latte to support other patterns like replacing scatter/gather
memory accesses with hand tuned+vectorized implementa-
tions is straightforward.

Loop Tiling: The synthesized code for neural networks is
loop-heavy, and thus Latte employs loop tiling to improve
performance. Tiling loops allows threads to compute tiles
of the output in parallel while sharing values in the cache
such as parameters. It also reduces memory consumption in
a multi-threading environment as the runtime only needs to
allocate space for a single tile of the input per thread rather
than for the entire input for every batch item. Threads can
reuse the allocated tile for each tile processed regardless of
the tile index or batch index. The parallelization strategy for
tiles is discussed in Section 5.4.3. During the tiling pass,
Latte inserts metadata about tiled loops to aid in fusion. This
is implemented by introducing a new tiled loop AST node
in the compiler that contains the input dependence distance
vector along the tiled dimension. Figure 10 shows the code
after pattern matching and tiling for the example program in
Figure 9.

5.4.2 Cross-Layer Fusion
Cross-layer fusion has the ability to greatly improve perfor-
mance in certain layer configurations. In general, fusion is
difficult because of the presence of fusion-preventing depen-
dencies. Latte is able to leverage semantic information intro-
duced into the AST by the tiling process to perform fusion
of tiled loops, allowing threads to reuse data computed for a
tile of a layer to immediately compute the output of the next

Convolution ReLU

Pool

Figure 11: Observe that to compute a 2x2 tile of the Pool
layer, a factor 2 larger tile along the vertical dimension of
the previous layers is required.

1 #pragma omp for collapse (2) schedule(static , 1)
2 for n in 1: length(batch)
3 for y_tile in 1: TILE_SIZE:height /2
4 gemm('T', 'N', TILE_SIZE *2*width , n_filters ,

n_inputs , conv1input[n], conv1weights ,
5 conv1[n])
6 for c = 1:n_filters ,
7 for y = y_tile:y_tile+TILE_SIZE*2,
8 x = 1:width
9 conv1[x, y, c] = max(conv1[x, y, c], 0.0)

10 for y = y_tile:y_tile+TILE_SIZE ,
11 x = 1:width
12 maxval = -Inf
13 for p = 1:2, q = 1:2
14 maxval = max(conv1[x+q, y+p, c], maxval)
15 pool1[x, y, c] = maxval

Figure 12: The final code after tiling, fusion, and paralleliza-
tion. Note the scaled TILE_SIZE references in the Convolu-
tion and ReLU codes on lines 3 and 5.

layer. This fusion only occurs when there is no dependence
along dimensions greater than the tiled dimension.

In Figure 10 we see that the computation of the ReLU
layer is trivially fusible due to an identical tile size and
lack of loop-carried dependence along the tiling dimension.
However on line 13 we can see a fusion-preventing de-
pendency with an offset access to conv1 for the pooling
layer in the form of a loop-carried dependence. Furthermore,
the number of tiles pool1_y_tiles is half the amount of
relu1_y_tiles and conv1_y_tiles because pooling lay-
ers perform a sub-sampling of the inputs. Latte knows that
the pooling layer has a dependence distance of 2 in the y
dimension based on the connection structure, and thus at-
tempts to double the tile size of the previous loops for fusion.
This is depicted in Figure 11. Our final code after fusion is
shown in Figure 12 with a doubled tile size for the convo-
lution and ReLU loops. This results in the tiled loop length
being reduced to half, presenting the compiler with identi-
cal loop trip counts for the tiled loops, which enables fusion.
The compiler can ignore any other data dependencies within
the current tile, because they are executed sequentially and
by definition will only write to the neuron value array.

5.4.3 Parallelization
Except for NormalizationEnsembles, the computation of an
ensemble is implicitly data-parallel across batch items due

217

to the lack of edges crossing the outermost synthesized loop
across items in a batch. Furthermore, inside an iteration of
the batch loop, there typically exists a tiled loop. The com-
putation of each loop tile is also data parallel, because the
computation of a neuron’s output does not depend on any
other neurons in the ensemble. Latte parallelizes across the
batch loop, and when it exists the tiled loop via collaps-
ing (as shown in Figure 12). Typically values such as pa-
rameters or inputs are shared across tiles, thus Latte em-
ploys a static schedule that interleaves threads per itera-
tion and assigns threads in a compact fashion to proces-
sor units to improve cache performance. This scheduling is
performed using the OpenMP KMP_AFFINITY=compact and
schedule(static,1) constructs for the platform used in
our evaluation.

5.5 Code Generation
During the synthesis and optimization phases, Latte uses a
super-set of the Julia internal AST as an intermediate rep-
resentation. During parallelization, Latte introduces a node
consumable by the ParallelAccelerator.jl package [30] indi-
cating an explicitly parallel for-loop. This node contains in-
formation about collapsed loop nests, scheduling, and chunk
size. During tiling, Latte introduces an AST node to repre-
sent tiled loops that carry metadata used during fusion as
well as an AST node to prevent fusion across blocks when
synthesizing code for unfuseable ensembles such as Normal-
izationEnsembles. After completion of optimization, Latte
lowers tiled loop nodes into normal for-loops and removes
the fusion-preventing AST nodes. When lowering the AST,
Julia transforms for-loops into a series of goto statements
and conditionals. Intel’s C++ compiler is unable to effec-
tively vectorize these loops due to the presence of complex
conditionals and goto statements. To ensure that the final
generated code is vectorized, Latte transforms the Julia AST
before lowering to preserve the loop based structure of the
code. Latte also annotates these for-loop nodes with prag-
mas to guide the C++ compiler to ignore vector dependen-
cies and aliasing. ParallelAccelerator.jl consumes the low-
ered AST and emits C++ code which is then passed to Intel’s
C++ compiler. We extended ParallelAccelerator.jl to support
code generation for the Xeon Phi coprocessor using Intel’s
Compiler Assisted Offload [1]. For this, we introduced an
AST node to indicate offload regions as well as metadata
used as clauses for offload pragmas indicating pointers to be
copied to Xeon Phi.

6. Latte Runtime
The Latte runtime employs data parallelism for training neu-
ral networks by using a hierarchical design with two lev-
els. The first level is within a server node where accelerators
such as GPUs and Xeon Phi coprocessors communicate with
a host CPU over a fast interconnection such as PCIe. We will
call this intra-node level data parallelism. The second level

of data parallelism is across the nodes in a cluster communi-
cating over a network using MPI, which we will call cluster-
level data parallelism. As discussed in Section 5.3, Latte in-
serts runtime calls to initiate gradient synchronization when
the values have been produced. The runtime performs this
synchronization using the MPI 3 asynchronous Iallreduce.
The use of asynchronous MPI allows the reduction and com-
munication of gradients to be overlapped with computation
during back propagation and parameter updates.

6.1 Intra-node Data Parallelism
At present, many accelerators, the Intel Xeon Phi and certain
discrete GPUs included, require a host processor as an in-
terface to access the system memory. Typically, many deep
learning frameworks have used the host CPU to fetch the
next set of inputs which is transferred to the accelerator
memory before processing. Latte will leverage available ac-
celerators, however it employs two techniques to minimize
the overhead of data transfer to and from the accelerator.
First, we use input data double buffering to hide the latency
of moving input data to the accelerator. That is, while the
accelerator is processing a set of inputs, the Latte runtime
will copy the next set of inputs into a separate buffer. When
the iteration is finished, the input buffers are swapped and
the runtime begins another copy into the old input buffer.
After the first iteration, the time spent copying data to the
accelerator is completely hidden by the actual computation.
Typically the processing time of a batch of inputs is much
larger than the data transfer time of the batch.

The next technique is to overlap host computation with
data transfer and accelerator computation. Instead of having
the host sit idle while the accelerator processes a batch, Latte
divides the current batch into chunks, assigning chunks to
each available compute units on the accelerator including
the host. We begin by assigning accelerators a chunk size
of 16 and the rest to the host. We use a linear search to
increase chunk size until the time to process a chunk on
the accelerator matches the time to process on the host. This
search occurs once at the beginning of training.

7. Evaluation
In this section, we evaluate the performance of Latte on
both shared memory and distributed memory systems and
compare its performance with existing systems. In particular,
we compare Latte with the popular and high-performance
Caffe [32] deep learning framework, which is implemented
in C++, as well as Mocha.jl [47], a Julia deep learning
framework inspired by Caffe. We used the 2012 ImageNet
Large Scale Visual Recognition Challenge [39] dataset with
each image resized to 224× 224 for our evaluation.

The Latte system infrastructure is built on top of Julia’s
ParallelAccelerator.jl package [30]. We extend ParallelAc-
celerator to generate both coprocessor Intel offload and dis-
tributed memory MPI codes. We use the Intel® C++ Com-

218

Forward
Backward
Total

Benchmark

+Fusion+Tiling+Parallelization

17.0

14.9
15.7

10.2

11.9
11.2

7.34

9.08
8.30

0

5

10

15

20

S
p

e
e
d

u
p

 o
v
e
r

C
a
ff

e

Figure 13: Effect of individual optimizations on speedup in
the microbenechmark.

piler (ICC) v15.0.2 with “-O3" flag for compilation of the
generated C++ code. Our evaluation uses Julia v0.4.

Figures 13-17 show speedups, so higher is better.

7.1 Single Node Evaluation
For single node and accelerator performance, we use a ma-
chine with a dual-socket Intel Xeon E5-2699 v3 x86 CPU
with 36 cores having 132GB system memory and two Intel
Xeon Phi 7110P coprocessors.

7.1.1 Benefits of Cross-Layer Fusion
To understand the performance benefits of cross layer op-
timizations in Latte, we used a microbenchmark consisting
of only the first three layers of the VGG network. Latte is
able to perform tiling and fusion of the convolution, pooling,
and ReLU layers simultaneously, resulting in data locality
and synchronization benefits. Figure 13 shows the speedup
of Latte over Caffe’s standard library approach. With the
parallelization strategy described in Section 5.4.3, the Latte
compiler outperforms Caffe by more than 7×. Furthermore,
the Latte compiler equipped with advanced optimizations
such as cross-layer fusion, tiling, and vectorization is able
to achieve 17.0×, 15.0×, and 15.7× speedup for forward,
backward, and forward+backward runs, respectively. Our
results show that a neural network implemented using a
high-level specification can enjoy impressive training-time
speedups as a result of cross-layer optimizations that are im-
possible when using highly-tuned layer-specific libraries.

7.1.2 ImageNet Models
The ImageNet Large Scale Visual Recognition Challenge [40]
is an annual benchmark challenge in object category clas-
sification and detection on hundreds of object categories
and millions of images. To evaluate Latte’s overall perfor-
mance, we implemented three well-known ImageNet mod-
els, AlexNet [36], OverFeat [41], and VGG [42], using the
standard, publicly available configurations [16]. The results
are shown in Figure 14. We observe between 5-6× per-
formance improvement for the AlexNet and VGG models,
and a 3.2× improvement for the OverFeat model. These
results are less dramatic than the cross-layer optimization

AlexNet OverFeat VGG

6.00

3.21

5.36

0

2

4

6

8

S
p

e
e
d

u
p

 o
v
e
r

C
a
ff

e

Figure 14: Speedup of Latte over Caffe on the ImageNet
models.

microbenchmark due to the cost of the overall computation
of the network, including layers that cannot be optimized
with cross-layer optimizations, as well as reduced benefit
from tiling as the spatial dimension of the data gets smaller
after each pooling layer. Figure 15 provides a breakdown
of speedup over Caffe for the first four groups of Convo-
lution+ReLU+Pooling layers in the VGG network. As the
problem size reduced after a pooling layer, the effect of our
optimizations were less pronounced. For example, tiling is
less effective because more of the data fits into the cache.
In Group 4 especially, we see less speedup as this group
contains two convolution layers followed by a pooling layer;
in this case, we cannot fuse the convolution layers due to
dependencies along the third dimension. The OverFeat net-
work uses 2-4× the number of filters in the later convo-
lution layers than AlexNet, increasing the size of the final
GEMM calls for the fully-connected layers. This results in
more of the compute time to be spent in MKL calls execut-
ing the fully-connected layers in both implementations. Be-
cause both Latte and Caffe use MKL, we see less speedup as
they have the same performance for computing these fully-
connected layers.

7.1.3 Comparison with Mocha
Figure 16 shows Latte’s speedup over Julia’s Mocha.jl li-
brary [47] as a reference baseline for a high-level implemen-
tation of a deep learning framework. We observe orders-of-
magnitude performance improvements: 37.9× for AlexNet,
16.2× for OverFeat, and 41× for VGG. We see these im-
provements for two reasons. First, like Caffe, Mocha does
not use parallelization or tiling when computing layers. Sec-
ond, Mocha’s code that does not call into MKL executes
in Julia, which is unable to match the performance of C++
code for these compute intensive operations. Because of this,
Mocha provides some kernel implementations in C++ to im-
prove performance, which were used when collecting the
numbers in Figure 16. However, these native kernel exten-
sions were still unable to match Latte’s synthesized code.

7.1.4 Xeon+Xeon Phi Accelerator Performance
To evaluate Latte’s ability to leverage a Xeon Phi coproces-
sor attached to a Xeon host node, we measured the through-
put in terms of number of images processed per second. Be-

219

Group 1 Group 2 Group 3 Group 4

15.7

6.53 5.65
3.94

0

5

10

15

20

S
p

e
e
d

u
p

 o
v
e
r

C
a
ff

e

Figure 15: Breakdown of speedup for the first four groups
of Convolution+ReLU+Pooling layers of VGG.

AlexNet OverFeat VGG

37.8

16.2

41.0

0

10

20

30

40

50

S
p

e
e
d

u
p

 o
v
e
r

M
o
ch

a

Figure 16: Speedup of Latte over Mocha on the ImageNet
models.

Caffe (Xeon) Latte (Xeon) Latte (Xeon + Phi) Latte (Xeon + 2 Phi)

3.08

18.8

28.3

37.7

0

10

20

30

40

50

T
h
ro

u
g

h
p

u
t

(i
m

g
/s

)

Figure 17: Throughput (number of images processed per
second) results when adding Xeon Phi coprocessor with
Xeon host.

cause Latte is able to hide the latency of communication
by overlapping it with host computation (described in Sec-
tion 6.1), we see an improvement in images processed per
second as the number of Xeon Phi cards increase (as shown
in Figure 17). That is, each Xeon Phi card adds an additional
50% throughput. In our current implementation, Xeon Phi
throughput is limited by the time spent communicating com-
puted gradients back from the Xeon Phi at the end of each
chunk computation.

7.2 Cluster Evaluation
We evaluate Latte’s scalability on the Cori Supercomputer
and a commodity cluster of Intel Xeon processors. This eval-
uation was done to demonstrate that Latte is able to sup-
port distributed memory execution without any fundamen-
tal limitations. The Cori Supercomputer (Phase 1) has 1,630
compute nodes interconnected with a Cray Aries high speed
"dragonfly" topology. Each compute node has a dual socket
Intel Xeon E5-2698 v3 processor with 16 cores per socket
and 128 GB of memory. The commodity cluster has 128

�����

� � �� �� ��

������

������

����
���

���

���

���

�

��

��

��

��

�
�
�
�
�
�
�

Figure 18: Scaling results using a fixed batch size of 512.
For a set of nodes N , each node gets a 512/N chunk of the
batch to process. The dashed-line shows near-linear scaling.

�����

� � � �� ��

������

������

����
���

���

���

���

�

��

��

��

��

�
�
�
�
�
�
�

Figure 19: Scaling results using a fixed batch size of 64 per
worker using AlexNet training on the ImageNet dataset.

nodes with each node configured with an Intel Xeon E5-
2697 v3 processor and 64GB of system memory. It is also
equipped with Lustre file system and Infiniband intercon-
nects.

7.2.1 Cori
To evaluate Latte’s performance on Cori, we measure Latte’s
scaling efficiency with respect to the throughput of images
trained. For this evaluation, we fix the batch size to 512 and
evenly partition the batch amongst compute nodes. We use
the VGG network model for the evaluation. Figure 18 shows
scaling curve compared to the ideal, linear speedup for 1 to
64 nodes. The drop in efficiency as the number of nodes
increases can be attributed to Latte being less efficient on
smaller batch sizes due to the reduction in the amount of
available parallelism.

7.2.2 Commodity Cluster
For the Xeon commodity cluster evaluation, we fix a batch
size of 64 per node. Figure 19 shows near-linear scaling
that is constant with respect to the size of the model. That
is, as the number of workers/nodes increase, the cost of
communication required remains constant. Our results are
consistent with those reported in Baidu’s Deep Image sys-
tem [46] which used the same strategy for asynchronous gra-
dient communication.

220

Goodfellow et al. [24] 99.55%
Adam [15] 99.63%
Latte 99.20%
Latte (sequential) 99.20%

Figure 20: MNIST Top-1 Accuracy

7.3 Accuracy with Gradient Approximation
To evaluate the effect of lossy gradient calculations as de-
scribed in Section 6, we trained a simple network configura-
tion on the MNIST dataset based on the one described in Mi-
crosoft’s Project Adam work [15]. Our results in Figure 20
showed identical accuracy for both versions, indicating that
the noise introduced via parallelization in our system did not
contribute to a degradation in accuracy.

8. Related Work
Low-Level Deep Learning Libraries: cuDNN [14] is the
de facto standard for accelerating deep learning on NVIDIA
GPUs. cuDNN provides highly efficient implementations of
various layers found in deep neural networks. NNPACK [21]
and PCL-DNN [18] similarly provide efficient layer im-
plementations focused on targeting x86 processors. Unlike
Latte, these static libraries are unable to dynamically fuse
across layers.

Graph Engines/Toolkits: There exits a variety of modern
computation graph engines and toolkits including CNTK [5],
Theano [10], TensorFlow [4], and Torch [17]. Graph engines
improve composability and expressibility by supporting lay-
ers expressed at a higher-level. Unlike Latte, these libraries
do not provide a high-level abstraction using neuron, ensem-
ble, and connection for describing networks. Furthermore,
expressing layers at a high-level comes at a large perfor-
mance cost. Thus, many of these graph engines expose bind-
ings to low-level libraries like cuDNN, meaning they suffer
from the same lack of opportunity for cross-layer optimiza-
tions. To our knowledge no graph engine supports fusion of
non-elementwise layers like convolution and pooling (Sec-
tion 5.4.2).

Deep Learning Frameworks: Caffe [32] is one of the
most popular open-source deep learning frameworks. It has
C++ and CUDA backends, as well as bindings to NVIDIA’s
cuDNN. Mocha.jl [47] is a deep learning framework written
in Julia. Its design and implementation was heavily modeled
after Caffe. These frameworks are built on top of graph-
based engines and low-level libraries, and thus suffer from
the same limitations.

Distributed Deep Learning: Google’s DistBelief [19] pi-
oneered large-scale distributed deep learning by presenting
new optimization methods that mapped efficiently to dis-
tributed training. Microsoft’s Project Adam [15] and Baidu’s
Deep Image system [46] are modern examples of highly
optimized implementations of distributed deep learning.

Latte’s cluster code generation replicates the synchroniza-
tion strategy used in Deep Image [46] and our evaluation
results were consistent with their reported scaling efficiency.

Domain-Specific Languages: Halide [38] demonstrated
that high-performance image processing code could be writ-
ten productively using a DSL. SEJITS [12] and Delite [13]
provide infrastructure for the creation of DSLs. Latte is a
DSL built with ParallelAcclerator.jl [30], a framework for
accelerating Julia that was inspired by both the SEJITS and
Delite projects.

9. Conclusion
Latte provides a high-level abstraction in the form of a con-
cise and simple DSL to improve programmer productiv-
ity for implementing neural networks. In addition to im-
proved programmability, Latte’s abstraction enables opti-
mizations that are impossible to do in static libraries and dif-
ficult to do on general code. We demonstrated Latte’s abil-
ity to outperform standard approaches in micro-benchmarks
as well as on popular neural network models. Latte’s run-
time supports training networks on heterogeneous and dis-
tributed memory systems, an important feature for accel-
erating the training of real-world models. Our hope is that
Latte will be useful to DNN researchers by bridging the time
gap between algorithm development to prototyping to high-
performance implementation. Latte is released in the open
source and the latest version of the code including a standard
library with common DNN layers can be found at https:
//github.com/IntelLabs/Latte.jl. In future, we would
like to extend Latte to support complex network models
used in neural simulators like Nengo [8]. While it is impor-
tant to optimize DNNs for CPUs given their widespread use
in large-scale computing clusters, several optimizations that
we perform including cross-layer optimizations and overlap-
ping communication-computation will benefit GPUs and we
would like to extend Latte to generate efficient GPU code as
a part of future work.

Acknowledgments
We would like to thank Lindsey Kuper, Brian T. Lewis, and
Justin Gottschlich for their valuable feedback that helped to
improve the presentation. We are grateful to Paul Hargrove
for getting us access to the Cori Supercomputer. We are also
thankful to the anonymous reviewers for their comments
and suggestions. For the UC Berkeley contributors, research
was partially funded by DARPA Award Number HR0011-
12-2-0016, the Center for Future Architecture Research, a
member of STARnet, a Semiconductor Research Corpora-
tion program sponsored by MARCO and DARPA, and AS-
PIRE Lab industrial sponsors and affiliates Intel, Google,
Hewlett-Packard, Huawei, LGE, NVIDIA, Oracle, and Sam-
sung.

221

https://github.com/IntelLabs/Latte.jl
https://github.com/IntelLabs/Latte.jl

References
[1] Effective Use of the Intel Compiler’s Offload Features.

URL https://software.intel.com/en-us/articles/
effective-use-of-the-intel-compilers-offload-
features.

[2] Intel Math Kernel Library. Reference Manual. Intel Corpora-
tion, Santa Clara, USA, 2009. ISBN 630813-054US.

[3] Torch NN. https://github.com/torch/nn, 2015.

[4] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-
sorFlow: Large-scale machine learning on heterogeneous sys-
tems, 2015. URL http://tensorflow.org/.

[5] A. Agarwal, E. Akchurin, C. Basoglu, G. Chen, S. Cyphers,
J. Droppo, A. Eversole, B. Guenter, M. Hillebrand, R. Hoens,
X. Huang, Z. Huang, V. Ivanov, A. Kamenev, P. Kranen,
O. Kuchaiev, W. Manousek, A. May, B. Mitra, O. Nano,
G. Navarro, A. Orlov, M. Padmilac, H. Parthasarathi, B. Peng,
A. Reznichenko, F. Seide, M. L. Seltzer, M. Slaney, A. Stol-
cke, Y. Wang, H. Wang, K. Yao, D. Yu, Y. Zhang, and
G. Zweig. An introduction to computational networks
and the computational network toolkit. Technical Report
MSR-TR-2014-112, August 2014. URL http://research.
microsoft.com/apps/pubs/default.aspx?id=226641.

[6] S. Amari. Backpropagation and stochastic gradient de-
scent method. Neurocomputing, 5(4):185 – 196, 1993.
ISSN 0925-2312. doi: http://dx.doi.org/10.1016/0925-
2312(93)90006-O. URL http://www.sciencedirect.
com/science/article/pii/092523129390006O.

[7] A. Ashari, S. Tatikonda, M. Boehm, B. Reinwald, K. Camp-
bell, J. Keenleyside, and P. Sadayappan. On optimizing ma-
chine learning workloads via kernel fusion. In Proceedings of
the 20th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, PPoPP 2015, pages 173–182,
New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3205-7.
URL http://doi.acm.org/10.1145/2688500.2688521.

[8] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stew-
art, D. Rasmussen, X. Choo, A. R. Voelker, and C. Eliasmith.
Nengo: a Python tool for building large-scale functional brain
models. Frontiers in Neuroinformatics, 7, 2013.

[9] G. Belter, E. R. Jessup, I. Karlin, and J. G. Siek. Automating
the generation of composed linear algebra kernels. In Pro-
ceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, page 59. ACM, 2009.

[10] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,
G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio.
Theano: a CPU and GPU math expression compiler. In Pro-
ceedings of the Python for Scientific Computing Conference
(SciPy), June 2010. Oral Presentation.

[11] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. Julia:
A Fast Dynamic Language for Technical Computing. CoRR,

abs/1209.5145, 2012. URL http://arxiv.org/abs/1209.
5145.

[12] B. Catanzaro, S. Kamil, Y. Lee, J. Demmel, K. Keutzer,
J. Shalf, K. Yelick, and A. Fox. SEJITS: Getting productivity
and performance with selective embedded JIT specialization.

[13] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya,
and K. Olukotun. A domain-specific approach to hetero-
geneous parallelism. ACM SIGPLAN Notices, 46(8):35–46,
2011.

[14] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer. cuDNN: Efficient Primitives
for Deep Learning. CoRR, abs/1410.0759, 2014. URL http:
//arxiv.org/abs/1410.0759.

[15] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanara-
man. Project Adam: Building an Efficient and Scal-
able Deep Learning Training System. In 11th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 14), pages 571–582, Broomfield, CO, Oct.
2014. USENIX Association. ISBN 978-1-931971-16-
4. URL https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/chilimbi.

[16] S. Chintala. Convnet Benchmarks. https://github.com/
soumith/convnet-benchmarks, 2015.

[17] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7:
A MATLAB-like environment for machine learning. In
BigLearn, NIPS Workshop, number EPFL-CONF-192376,
2011.

[18] D. Das, S. Avancha, D. Mudigere, K. Vaidyanathan, S. Srid-
haran, D. D. Kalamkar, B. Kaul, and P. Dubey. Distributed
deep learning using synchronous stochastic gradient descent.
CoRR, abs/1602.06709, 2016. URL http://arxiv.org/
abs/1602.06709.

[19] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
A. Senior, P. Tucker, K. Yang, Q. V. Le, et al. Large scale
distributed deep networks. In Advances in Neural Information
Processing Systems, pages 1223–1231, 2012.

[20] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient
methods for online learning and stochastic optimization. The
Journal of Machine Learning Research, 12:2121–2159, 2011.

[21] M. Dukhan. NNPACK. https://github.com/
Maratyszcza/NNPACK, 2016.

[22] F. Gers. Long short-term memory in recurrent neural net-
works.

[23] X. Glorot and Y. Bengio. Understanding the difficulty of train-
ing deep feedforward neural networks. In International Con-
ference on Artificial Intelligence and Statistics, pages 249–
256, 2010.

[24] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville,
and Y. Bengio. Maxout networks. arXiv preprint
arXiv:1302.4389, 2013.

[25] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition
with deep recurrent neural networks. In Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE International
Conference on, pages 6645–6649. IEEE, 2013.

[26] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet

222

https://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
https://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
https://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
https://github.com/torch/nn
http://tensorflow.org/
http://research.microsoft.com/apps/pubs/default.aspx?id=226641
http://research.microsoft.com/apps/pubs/default.aspx?id=226641
http://dx.doi.org/http://dx.doi.org/10.1016/0925-2312(93)90006-O
http://dx.doi.org/http://dx.doi.org/10.1016/0925-2312(93)90006-O
http://www.sciencedirect.com/science/article/pii/092523129390006O
http://www.sciencedirect.com/science/article/pii/092523129390006O
http://doi.acm.org/10.1145/2688500.2688521
http://arxiv.org/abs/1209.5145
http://arxiv.org/abs/1209.5145
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
https://github.com/soumith/convnet-benchmarks
https://github.com/soumith/convnet-benchmarks
http://arxiv.org/abs/1602.06709
http://arxiv.org/abs/1602.06709
https://github.com/Maratyszcza/NNPACK
https://github.com/Maratyszcza/NNPACK

classification. CoRR, abs/1502.01852, 2015. URL http:
//arxiv.org/abs/1502.01852.

[27] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[28] K. Hornik, M. Stinchcombe, and H. White. Multilayer feed-
forward networks are universal approximators. Neural net-
works, 2(5):359–366, 1989.

[29] Intel. Intel Data Analytics Acceleration Library (DAAL).
https://software.intel.com/en-us/intel-daal, 2015.

[30] Intel Labs. ParallelAccelerator.jl. https://github.com/
IntelLabs/ParallelAccelerator.jl, 2015.

[31] S. Ioffe and C. Szegedy. Batch Normalization: Accelerat-
ing Deep Network Training by Reducing Internal Covariate
Shift. CoRR, abs/1502.03167, 2015. URL http://arxiv.
org/abs/1502.03167.

[32] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
Architecture for Fast Feature Embedding. arXiv preprint
arXiv:1408.5093, 2014.

[33] K. Kennedy and J. R. Allen. Optimizing Compilers for Mod-
ern Architectures: A Dependence-based Approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.
ISBN 1-55860-286-0.

[34] A. Krizhevsky. One weird trick for parallelizing convolutional
neural networks. CoRR, abs/1404.5997, 2014. URL http:
//arxiv.org/abs/1404.5997.

[35] A. Krizhevsky. cuda-convnet2. https://github.com/
akrizhevsky/cuda-convnet2, 2015.

[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in Neural Information Processing Systems, pages
1097–1105, 2012.

[37] Microsoft. CNTK. https://
github.com/Microsoft/CNTK/tree/
7d3e84e7733c1c965d995e28ff4bac60f166a03b, 2015.

[38] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,
and S. Amarasinghe. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image
processing pipelines. ACM SIGPLAN Notices, 48(6):519–
530, 2013.

[39] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

[40] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

[41] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,
and Y. LeCun. OverFeat: Integrated Recognition, Localiza-
tion and Detection using Convolutional Networks. CoRR,
abs/1312.6229, 2013. URL http://arxiv.org/abs/1312.
6229.

[42] K. Simonyan and A. Zisserman. Very Deep Convolu-
tional Networks for Large-Scale Image Recognition. CoRR,
abs/1409.1556, 2014.

[43] Skymind. Deep Learning for Java (DL4J). http://
deeplearning4j.org/architecture.html, 2015.

[44] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper
with convolutions. CoRR, abs/1409.4842, 2014. URL http:
//arxiv.org/abs/1409.4842.

[45] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop. COURS-
ERA: Neural Networks for Machine Learning, 2012.

[46] R. Wu, S. Yan, Y. Shan, Q. Dang, and G. Sun. Deep Image:
Scaling up Image Recognition. CoRR, abs/1501.02876, 2015.
URL http://arxiv.org/abs/1501.02876.

[47] C. Zhang. Mocha.jl. https://github.com/pluskid/
Mocha.jl, 2015.

223

http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
https://software.intel.com/en-us/intel-daal
https://github.com/IntelLabs/ParallelAccelerator.jl
https://github.com/IntelLabs/ParallelAccelerator.jl
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1404.5997
https://github.com/akrizhevsky/cuda-convnet2
https://github.com/akrizhevsky/cuda-convnet2
https://github.com/Microsoft/CNTK/tree/7d3e84e7733c1c965d995e28ff4bac60f166a03b
https://github.com/Microsoft/CNTK/tree/7d3e84e7733c1c965d995e28ff4bac60f166a03b
https://github.com/Microsoft/CNTK/tree/7d3e84e7733c1c965d995e28ff4bac60f166a03b
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1312.6229
http://deeplearning4j.org/architecture.html
http://deeplearning4j.org/architecture.html
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1501.02876
https://github.com/pluskid/Mocha.jl
https://github.com/pluskid/Mocha.jl

	Introduction
	Background
	Neural Networks
	Execution
	Network Primitives
	Network Architectures
	Training

	Latte Language Design
	Neuron
	Ensembles
	Connections
	Network

	Examples
	Latte Compiler
	Internal Representation of Networks
	Analysis of Shared Variables
	Synthesis
	Optimizations
	Intra-Layer Optimizations
	Cross-Layer Fusion
	Parallelization

	Code Generation

	Latte Runtime
	Intra-node Data Parallelism

	Evaluation
	Single Node Evaluation
	Benefits of Cross-Layer Fusion
	ImageNet Models
	Comparison with Mocha
	Xeon+Xeon Phi Accelerator Performance

	Cluster Evaluation
	Cori
	Commodity Cluster

	Accuracy with Gradient Approximation

	Related Work
	Conclusion

