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Abstract
The Glasgow Haskell Compiler (GHC) is a well supported opti-
mizing compiler for the Haskell programming language, along with
its own extensions to the language and libraries. Haskell’s lazy se-
mantics imposes a runtime model which is in general difficult to
implement efficiently. GHC achieves good performance across a
wide variety of programs via aggressive optimization taking advan-
tage of the lack of side effects, and by targeting a carefully tuned
virtual machine. The Intel Labs Haskell Research Compiler uses
GHC as a frontend, but provides a new whole-program optimiz-
ing backend by compiling the GHC intermediate representation to
a relatively generic functional language compilation platform. We
found that GHC’s external Core language was relatively easy to
use, but reusing GHC’s libraries and achieving full compatibility
were harder. For certain classes of programs, our platform pro-
vides substantial performance benefits over GHC alone, performing
2× faster than GHC with the LLVM backend on selected modern
performance-oriented benchmarks; for other classes of programs,
the benefits of GHC’s tuned virtual machine continue to outweigh
the benefits of more aggressive whole program optimization. Over-
all we achieve parity with GHC with the LLVM backend. In this
paper, we describe our Haskell compiler stack, its implementation
and optimization approach, and present benchmark results compar-
ing it to GHC.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Compilers

Keywords Functional Language Compiler; Compiler Optimiza-
tion; Haskell

1. Introduction
The Glasgow Haskell Compiler (GHC) is a robust optimizing com-
piler for the Haskell programming language, providing extensive li-
braries and numerous extensions on top of standard Haskell. GHC
is widely used by the Haskell community as a standard develop-
ment platform, and also serves as a vehicle for active programming
language research. The Haskell programming language is widely
used within the functional programming (FP) community, and has
gained increasing traction outside of the FP world as well.
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Despite the apparent complexity of the Haskell surface lan-
guage, the design philosophy of the language is such that it is pos-
sible to reduce (or “de-sugar”) the surface language to a surpris-
ingly small core language. GHC in fact does this explicitly as part
of its compilation strategy: most of the advanced features of the
language are quickly eliminated, leaving only a relatively simple
System F based intermediate representation (IR) known as Core
[27, 29]. Much of the more advanced optimization technology in
GHC is implemented as transformations on Core.

In addition to aggressive optimization, GHC also employs
a highly-tuned virtual machine and garbage collector designed
closely around the requirements of implementing the lazy seman-
tics of Haskell efficiently. After optimization is performed on Core,
programs are translated to an IR based on this virtual machine,
the Spineless Tagless G-Machine (STG Machine) [25]. STG repre-
sentations are then translated into Cmm, a variant of the C-- lan-
guage [23] before passing to GHC’s native code generator (NCG)
or LLVM to generate binary executables.

This paper reports on an ongoing effort to compile Haskell by
using GHC as a frontend to an existing functional language com-
piler built at Intel Labs that is largely language agnostic. We use
GHC to perform de-sugaring and high-level optimization; intercept
the Core IR from GHC and translate the lazy Core language into a
strict, lower-level, general-purpose IR; perform aggressive whole-
program compilation on this IR; and compile the result eventually
to Pillar [2], also inspired by C--. Our choice of building a Haskell
compiler by marrying two compiler platforms together is deliber-
ate. Being able to support the Haskell language and various GHC
extensions gives us instant access to a large set of real world li-
braries and programs, as well as the opportunity to contrast and
compare our methodologies in compiling functional languages with
those taken by GHC.

We observe that the promised simplicity of the Core IR has by
and large been borne out, but that the consequent complexity of
the interactions with the runtime system makes using GHC in this
fashion more difficult than it might at first seem. We present re-
sults across a wide range of benchmarks and show that for some
programs we are able to add substantial value over the core GHC
system, thereby demonstrating that our more aggressive optimiza-
tion can overcome the lack of a specialized runtime; but that for
other programs we are still a long way from being able to match the
performance of the tuned virtual machine and runtime. Overall we
achieve parity with GHC with the LLVM backend, and achieve a
2× speedup on a set of modern performance-oriented benchmarks.
We refer to our compiler as the Intel Labs Haskell Research Com-
piler (HRC).

We make the following contributions:

• An experiment to reuse GHC as a Haskell frontend, connect-
ing it to our own middle-end and backend, demonstrating that
GHC’s external Core is indeed easy to use, but reusing GHC’s
libraries and achieving full compatibility are harder.
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Figure 1. IRs and Passes of Intel Labs Haskell Research Compiler Pipeline

• A detailed description of an alternative approach to implement-
ing Haskell based on a traditional explicit-thunks IR and tra-
ditional compiler optimizations tailored to exploit functional-
language properties.

• A novel design of a functional compiler IR that combines low-
level control flow with a high-level object model, thereby en-
abling a number of optimizations not yet available to other com-
pilers, including optimizations on immutable arrays with ini-
tializing writes. To the best of our knowledge, this concept of
initializing writes is novel to our compiler.

• Evidence confirming the highly-tuned nature of GHC’s STG
Machine and garbage collector, but also showing that GHC
leaves performance on the table for certain applications.

2. FLRC
HRC is constructed as a frontend to a more general functional
language compilation platform called the Intel Labs Functional
Language Research Compiler (FLRC). We begin by giving an
overview of the principle components of our compiler. We discuss
the approach taken to compilation, give a general description of the
main intermediate representations used, and describe at a high level
the important optimizations performed.

2.1 Architecture

Figure 1 gives the overall pictorial view of our compiler pipeline.
The boxes represent transformation passes of the compiler, and
lines represent data flowing through the compiler, annotated with
the specific IR going into and coming out of each pass. When
we compile a set of input Haskell files, we first invoke GHC to
compile them to external Core files, read them back in, then go
through various internal transformations and multiple IRs, before
outputting a program in a language called Pillar [2] (an extension
to the C language inspired by C-- [23]). A tool called Pillar2c is

used to translate the Pillar code to C code, and the Intel C compiler
is used to produce the final machine executable.

At the core of FLRC is a language agnostic intermediate repre-
sentation called MIL, with an associated set of optimization passes.
The majority of the optimization in the compiler takes place at the
MIL level. From MIL code, we generate low-level Pillar code. Pil-
lar provides facilities to support garbage collection and other essen-
tial functionality for supporting high-level languages, but is other-
wise essentially C (and is in fact implemented as an extension to
C).

Specializations of FLRC to concrete languages are realized by
implementing language specific frontends targeting MIL as a back-
end. FLRC was originally developed to support an experimental
strict functional language [11], which has a separate frontend than
HRC. Both frontends implement a set of language specific opti-
mizations on higher-level intermediate representations, followed by
a globalization/closure-conversion pass which lowers these high-
level representations into MIL.

2.2 MIL

MIL is a loosely typed, control-flow-graph (CFG) based, closure-
converted, intermediate representation. The essential design philos-
ophy behind MIL is to maintain a relatively high-level object rep-
resentation while using a low-level CFG representation of program
control flow. Our observation is that there are dramatic optimiza-
tion benefits that can be obtained from leveraging the functional
language properties of immutability and memory-safety. In order to
take advantage of these properties, our intermediate representation
uses an object-based model of memory. We do not view memory as
a large array of bytes which may be arbitrarily mutated, but rather
as a collection of objects with well-defined initialization, reading,
and (for mutable objects) updating operations. On the other hand,
while maintaining high-level object representations provides great
optimization benefits, we argue that there are significant benefits to
a low-level representation of control flow with very few downsides.
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Since we are particularly interested in optimizing code which
operates on high-level aggregate objects such as immutable arrays,
it is important that the initialization code (including the control-
flow) for these objects be expressible directly in the local CFG at
their allocation point. In order to combine high-level objects with a
low-level control-flow representation, we use initializing writes—
a write to an object field that is guaranteed to be dynamically the
only write to that field. Initializing writes allow us to break down
the initialization of large (even statically unbounded) objects into
sequences of writes or loops while preserving immutability infor-
mation. From the perspective of optimization, initializing writes to
fields can be optimized in essentially the same way as an aggregate
immutable object construction. For example, a read from a field can
be freely replaced by the operand of an initializing write to the same
field. In order for this perspective to hold, initializing writes must
satisfy two unchecked invariants: a field cannot be read until it is
initialized and a field cannot be initialized twice. To the best of our
knowledge, the use of initializing writes is novel to our compiler.
A more standard approach used in compilers such as MLton [30]
and GHC is to allocate and initialize small heap values atomically,
but to initialize large aggregates using mutable operations and only
subsequently coerce the result to an immutable representation.

2.2.1 Types

MIL is loosely typed in that every variable has a type, and those
types must satisfy certain properties. However, it is not type safe
since the types of heap values are not accurately tracked, and
consequently the correctness of heap accesses cannot be statically
checked. Types are used in MIL primarily as means of tracking
and maintaining garbage collection information and secondarily
as an engineering methodology to improve the correctness of the
compiler.

In addition to the usual constraints of correctness with respect
to program semantics, it is essential that the final generated code
maintain a GC-safety property. Accurate garbage collection im-
poses certain requirements on programs, needing information about
which variables and object fields contain GC-managed references.
Aggressive optimization such as inter-procedural object unboxing
may change the GC status of variables and fields of objects [10, 19].
The MIL language must support the tracking of such information,
and the MIL optimizations must successfully maintain this infor-
mation. In the IR design, we represent this information using meta-
data associated with object allocation sites and using types on vari-
ables.

2.2.2 Effects

While MIL optimization focuses primarily on purely functional
(non-side-effecting) code, side-effecting code must nonetheless be
safely handled by the compiler. Side-effects arise both from source
code (e.g. monadic IO in Haskell) and because of lowering higher-
level language constructs to a lower-level language (e.g. setting and
reading exception handler data-structures). In order to preserve cor-
rectness without forcing the compiler to make overly conservative
assumptions, MIL makes use of effect annotations that mark func-
tions and thunks with a set of side-effects that may be unleashed
by calling or evaluating the function or thunk. Effect annotations
consist of subsets drawn from the full set of effects including po-
tential non-termination, heap reads and/or writes, generative allo-
cation, input/output effects, exception throwing, and others.

2.2.3 IR structure

A MIL program is a set of global objects named by variables, one of
which (which must be a code function) is a designated entry point
for the program. A symbol table maps variables to various useful
meta-data, most notably the type. Objects in MIL are either code

functions (corresponding approximately to C functions), primitive
values (such as integers or floating pointer numbers), or abstract
heap values. Heap values are allocated, initialized, and manipu-
lated via instructions (making extensive use of initializing writes
to preserve immutability properties). Inter-procedural control-flow
is effected via call and eval instructions. Calling conventions pro-
vide for either calls/evals via abstractly represented closures or di-
rect calls/evals to code functions in the case that the target code
function is known and no closure is required. Annotations on call
sites allow (conservative approximations of) control-flow informa-
tion either apparent in the initial program or computed via control
flow-analysis to be recorded directly in the intermediate represen-
tation as sets of code pointers potentially reaching the call site, pro-
viding some of the benefits of de-functionalization [26].

To represent instructions, MIL uses a variant of static single-
assignment (SSA) form similar to that used in compilers such as
the MLton compiler [30]. Basic blocks are parameterized over in-
put variables (playing the role of phi functions from standard SSA
form), contain a sequence of instructions, and are terminated by ei-
ther an inter-procedural or intra-procedural control transfer. Blocks
contain zero or more successors, each explicitly given as a target
of the control transfer. Non-local control flow such as exceptions
can be implemented via a second-class continuation mechanism,
and such exception edges are made explicit in the intermediate rep-
resentation using annotations on transfers and call/eval sites. In-
put variables for blocks are defined in the control transfer targeting
the block. This style of SSA fairly closely resembles (and provides
many of the benefits of) the use of continuations in a continuation-
passing style compiler, but with the added benefit of segregating
the local control-flow from the (potentially) truly inter-procedural
control-flow.

2.3 MIL optimization

FLRC is de facto a whole program compiler in that whole pro-
gram compilation is the only supported compilation mode. Whole
program compilation allows us to take advantage of the significant
optimization opportunities presented by having all of the program
code present for analysis. However, there is nothing in our compila-
tion strategy that requires whole program compilation. In particular
we have chosen not to do whole program de-functionalization [26],
and our global optimizations, while clearly benefiting from access
to the entire program text, do not assume so.

The primary goal of the MIL optimizer is to leverage immutabil-
ity and memory safety properties of source languages to provide
aggressive optimizations that cannot feasibly be performed on ar-
bitrary mutable code. The high-level object model provides sig-
nificant benefit to the optimizer, since the various objects encode
strong invariants about when and how the object can be mutated,
and what classes of objects might dynamically reach a given in-
struction. At the same time, the low-level control flow structure al-
lows for high-level idioms such as loops expressed through nests
of mutually recursive functions to be expressed as local control
flow. In principle, optimizations that apply to loops expressed as
control-flow graphs apply equally well to loops expressed via func-
tions. This is true in the same sense that any intra-procedural op-
timization can be done inter-procedurally: that is, it is possible
to do so, but requires substantially more effort, since each such
optimization must rediscover and reconstruct the portion of the
inter-procedural call graph which corresponds to local control-flow
(that is, does not escape, and is well-behaved in other ways), and
hence to which the intra-procedural optimization applies. Perform-
ing intra-procedural optimizations inter-procedurally can also com-
plicate the cost-model against which the optimization must be de-
signed significantly: for example, the inter-procedural analogy to
loop-invariant code motion in general requires introducing a wrap-
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per function to serve as a pre-header, the cost of which may out-
weigh the benefit of the code motion. Our experience leads us to
believe that it is vastly simpler and more efficient to just discover
once and for all which portions of the inter-procedural call graph
implement local control-flow, and to represent these portions di-
rectly as local control-flow to which standard intra-procedural op-
timizations (suitably adapted) can be applied.

2.3.1 Optimizations

Given the emphasis on using standard intra-procedural optimiza-
tions where possible, a key element of MIL optimization is turning
inter-procedural control-flow into local control-flow. In the MIL
this is done by two sets of optimizations. The first is a contifica-
tion [9] pass which turns uses of (mutual) recursion into loops. This
may be thought of as a very generalized version of the standard ap-
proach to turning self tail-recursive functions into loops (which is
also done as part of this pass). This pass is very effective at elimi-
nating inter-procedural control-flow. Secondly, in addition to con-
tification, several different inlining passes are run using different
heuristics. In one frequently run pass, functions known to be small
are inlined aggressively. Another pass performs more aggressive
inlining using fairly standard cost-budget inlining heuristics. A fi-
nal inlining pass uses a static profile estimation approach based on
work by Wu and Larus [31] to perform selective inlining at (esti-
mated) high-frequency call sites.

Another large set of mostly intra-procedural optimizations are
performed by a simplifier in the general style of Appel and Jim [3].
In order to implement this efficiently, before each run of the sim-
plifier the MIL intermediate representation is wrapped in an im-
perative data structure notionally implementing the linear time ap-
proach described by Appel and Jim, and previously implemented
by Benton et al [4]. A general worklist algorithm is run perform-
ing a large set of dataflow based optimizations including dead-code
elimination, constant and copy propagation, and other general sim-
plifying reductions. The simplifier is designed to avoid increas-
ing program size and to only perform optimizations which strictly
improve the program: consequently it can safely be run with ex-
tremely high-frequency (before and after every other optimization).
The imperative representation has proved extremely efficient in
practice, and each run of the simplifier contributes only negligibly
to overall compile time.

The compiler also implements a number of inter-procedural rep-
resentation optimizations using a field-sensitive, unification based
flow analysis [10, 19]. The main analysis can be roughly thought of
as computing a set of equivalence classes on variables and object
fields such that any two members of different equivalence classes
can be guaranteed never to contain the same dynamic heap value.
Given such an analysis, the compiler can use the information com-
puted by it to perform a number of representation optimizations
in a GC safe manner [10, 19]. For example, small, single-field,
immutable objects (such as boxed floating point numbers) are re-
placed inter-procedurally by the contents of the object. This is done
even when the object in question is placed into the heap as part
of other mutable or immutable objects, and is always done with-
out introducing any additional allocation or projection operations,
even at escape points. Other optimizations performed using this
analysis include inter-procedural dead-code and dead-field elimina-
tion, function argument flattening, inter-procedural constant propa-
gation, and control flow analysis. The analysis is also used to elimi-
nate the overhead of checking the evaluation status of thunks where
possible. The choice to use a unification based algorithm for this
analysis was driven in part by efficiency concerns, and in part by
the need to deal with GC safety issues. The analysis has proved
very scalable in practice, and generally very effective. The limi-
tations of unification based analysis do at times become apparent

however, and extending this with a subset based analysis remains
an area of interest for future work.

A number of intra-procedural optimizations target loops in the
control-flow graph. A loop inversion pass is used to attempt to
rewrite inner loops into a more amenable form for optimization.
Specifically, it turns top-test loops into bottom-test loops in which
once entered, the loop is guaranteed to run its body at least once.
This transformation allows loop-invariant code to be moved out of
loops in a non-speculative fashion, avoiding performance and cor-
rectness issues associated with speculative optimization. A loop-
invariant code motion pass does such non-speculative movement,
when safe to do so. Finally, a SIMD vectorization pass is performed
to attempt to create SIMD vector versions of inner loops [21]. A
key advantage of performing vectorization in MIL is that the de-
pendence analysis problem for immutable arrays is vastly more
tractable than the generalized problem for mutable arrays. Our vec-
torizer is able to vectorize loops for which the underlying C com-
piler is not able to safely produce vector code.

A number of supporting optimizations such as common sub-
expression elimination, effect analysis, code function escape anal-
ysis, recursive function analysis, control-flow graph simplification
and redundant branch elimination are also implemented and are run
either as standalone passes or as sub-components of other passes.

Our initial implementation focus with the MIL optimizer, while
supporting lazy code via thunks, was intended to target code in
which thunking was relatively rare. From the perspective of the
optimizer, thunks are pernicious not just because of the overhead
they incur directly, but more generally because they dramatically
obscure the control-flow of a program and hence greatly reduce the
effectiveness of the optimizer. It is important to note that this is
completely unrelated to the choice of using a strict-by-default in-
termediate representation: whether laziness is explicit or implicitly
represented, the program semantics remain the same and the opti-
mizer must perform the same reasoning about control flow. Since
thunks are vastly more common in Haskell, we have begun im-
plementing optimizations targeting thunked code specifically. One
current optimization pass attempts to recognize and mark thunks
which are either already values, or which can safely be evaluated
at their definition site and passed as values. A second optimization
makes a preliminary attempt at performing inlining of thunks by
using a data-flow analysis to discover thunks that are evaluated on
every path from their definition and to evaluate these strictly. This
work is preliminary, but has shown good results so far. For many
classes of Haskell programs, we see significant remaining opportu-
nities.

2.4 Pillar

FLRC and Pillar [2] were concurrently developed in the same lab
and one goal of the FLRC project was to act as a test case for
language development on top of Pillar. Pillar is a language, com-
piler, and runtime that provides programming language infrastruc-
ture. The idea behind Pillar is to allow language developers to focus
on compiler optimizations unique to that language and on runtime
code for unique aspects of those languages. The Pillar infrastruc-
ture optimizes and provides support for features that are common
to many languages and runtimes.

The core idea of Pillar is quite similar to (and inspired by) the
C-- language [23], with which it shares many common concepts. A
key difference between Pillar and C-- is that Pillar is implemented
as an extension to C, rather than as an entirely separate language.
This allows for the reuse of the numerous existing tools available
for compiling, debugging, and performance-tuning C code. In ad-
dition, this approach makes it easy to incorporate existing C code
into Pillar programs, since most C code can simply be compiled as
Pillar code with no modification.

108



GHC HRC
Desugaring, type analysis, Core-to-Core transformation Same process, since it uses GHC as frontend

STG
Functional language, object based memory model,

MIL
SSA, CFG based blocks with explicit transfer,

and optimized for currying and thunks object based memory model, but conventional

Cmm
Based on C--, CFG based blocks, low-level types,

Pillar Inspired by C--, C types, C calling convention
and custom calling convention

LLVM or Portable LLVM bitcode, or Intel C/C++
Portable C code compiled to assembly

NCG direct assembly generation Compiler
Runtime and GC optimized for currying and thunks Conventional runtime and GC

Table 1. Comparison between GHC and HRC

The Pillar language extends C with a small number of addi-
tional constructs including parallelism, a Ref type identifying GC-
managed pointers, second-class continuations, tailcalls, and calling
conventions for the integration of Pillar and ordinary C code. The
Pillar compiler infrastructure is responsible for taking Pillar code,
lowering it to machine code, and in conjunction with the Pillar
runtime, providing support for stack walking, root-set enumeration
(RSE), tailcalls, composable continuations, and transitions between
managed and unmanaged code.

Originally, the Pillar compiler was implemented as modifica-
tions to the Intel C/C++ Compiler. This approach allowed Refs
and tailcalls to be implemented with no runtime overhead but also
required frequent reintegration of our modifications with an ever
changing compiler codebase, which quickly became burdensome.
Therefore, we experimented with a different Pillar implementation
that translates Pillar to C using the Pillar2C translator and then
uses an unmodified (and up-to-date) Intel C/C++ compiler to com-
pile the translated output to binary. Pillar2C uses a shadow-stack
approach to support Refs and implements a number of optimiza-
tions for the shadow-stack and tailcalls. With these optimizations,
the average Pillar2C runtime overhead when compared to the native
compiler was approximately 10%.

The runtime for our compiler uses a modified version of the
TGC garbage collector [1] that was created for the first FLRC
frontend. These modifications include the addition of Haskell-
specific features such as weak pointer objects and the ability to
perform thunk indirection removal. In the original frontend, writes
to global objects were minimal due to an eager evaluation strat-
egy that worked well with TGC’s private nurseries. Conversely, as
described by Marlow and Peyton Jones [16] and verified by us,
the lazy evaluation strategy of Haskell produces many more writes
to global objects. These writes cause very frequent private nurs-
ery collections in TGC and the overhead from these collections
can increase the runtime of an application by several times. These
collections could be minimized through the use of a read barrier
integrated with thunk evaluation [16]. However, we have not imple-
mented this approach since we felt it broke Pillar modularization.
Instead, we use a non-generational mark-sweep-compact mode in
TGC without private nurseries. This illustrates an advantage of
GHC’s integrated runtime.

3. HRC
GHC compiles Haskell source programs to a typed internal repre-
sentation called Core that is very close to System F [27], and is
able to export an external representation of the Core program with
well defined syntax [29]. HRC uses GHC as a frontend to compile
from Haskell source to Core, and then takes GHC’s external Core
and translates it to MIL, before passing down to the rest of FLRC
compilation pipeline.

Table 1 summarizes the difference between GHC and HRC
at different compilation stages. Most notably, GHC’s STG repre-
sentation is drastically different from the MIL IR employed by
HRC/FLRC. The former is still of a functional style with lambda
abstraction and application, while the latter follows a SSA style
with CFG based block structure; the former has a custom design
to handle fast currying [15], while the latter stays within a conven-
tional heap object model.

The CFG based block structure used by MIL is similar to low-
level control flows found in Cmm or LLVM, but it’s the high-
level object representation that puts MIL in a unique position to
exploit properties of functional programs. In contrast, much of the
high-level type and meta information is lost once GHC lowers a
program from STG to Cmm (and to that extent, LLVM bitcode).
Sophisticated analysis is required to even attempt to derive the
invariant that could be encoded into the meta-data (e.g., which
object fields are written to only once) from IRs that use a lower-
level memory model such as Cmm or LLVM bitcode.

As a consequence of the MIL design, we choose to intercept
the intermediate Core representation of GHC rather than STG or
Cmm because we want to keep available the rich type information
in Core to help build object type and meta-data in MIL. However,
the task of connecting GHC as a frontend to FLRC is not as simple
as a mere translation from GHC Core to MIL. There are numerous
practical challenges involved in making this work out:

• GHC is an incremental compiler, which compiles each module
in relative isolation (modulo extensive cross-module inlining),
while FLRC is currently a whole program compiler.

• The intermediate representation of GHC is essentially a lazy
functional language based on System F, while MIL is a CFG-
based strict language with first-order functions. GHC annotates
impure operations in its IR via state-passing, whereas MIL uses
an explicit effect annotation system.

• GHC compiled programs rely on (and are sometimes tightly
coupled with) the GHC runtime, a complex and highly tuned
system, for implementing critical features including GHC prim-
itives, multi-threading, garbage collection, etc.

In the remainder of this section, we describe these differences in
more detail and discuss the impedance matching required in order
to integrate the two compilers. We begin by discussing the modifi-
cations required to GHC itself in order to enable its integration into
our compiler pipeline.

3.1 Modifications to GHC

Outputting external Core GHC has both an internal Core and an
external Core representation [29], with the latter intended to sup-
port the exchange of programs with the outside world. Unfortu-
nately over the years this part of GHC has not been fully main-
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tained as it is not widely used. In order to make use of this facility,
we have brought this code back into a sufficiently usable state to
cover the large fragment of Core that we require for correctness, as
well as some additional annotation information such as strictness
information that are important for performance reasons.

A related issue for our purposes is that in order to impedance
match between the GHC incremental compilation model and the
FLRC whole-program model, we require the ability to access not
just the external Core representation of the main program, but also
the installed libraries. To deal with this, we have modified the build
process of GHC and the related Cabal library tool to output external
Core files when compiling libraries, and to copy Core files along
with standard binary files when installing libraries.

Library Linking Because of differences in the runtime model, we
cannot directly link HRC compiled object files with GHC’s runtime
or with GHC compiled libraries. However, many programs and
libraries contain C or FFI code fragments that are not representable
in external Core, and that will result in link errors if not handled
properly. Besides, recent GHC will also automatically produce
stub codes (in C) when compiling certain form of FFI imports,
which may then be referenced in the generated external Core. To
solve these linking problems, we add a new -fstub-only option to
tell GHC to produce object files that contain only foreign code
segments. If we use this modified GHC to compile a Haskell library,
we will get a binary library file containing objects with only foreign
definitions in them. When HRC takes the external Core as input,
it is able to find foreign function definitions in these library files
at link time. The Cabal library has also been modified to use this
option when compiling and installing Haskell libraries for HRC.

Arbitrary precision integer FLRC has internal support for arbi-
trary precision integer as a primitive type, while GHC provides it
through one of the two libraries: integer-simple or integer-gmp. The
former is pure Haskell and portable, but it is not a high performance
library. The latter links with GMP C library, but contains C-- code
as well as GC hooks that are tied into GHC’s runtime, and there-
fore does not properly work with FLRC. Our solution is to modify
GHC to declare a set of primitives that operate on integers, but leave
them as unimplemented. Then we modify the integer-simple library
to implement its API in terms of these newly added primitives so
that we can eventually intercept them in our compiler and map to
FLRC’s built-in integer primitives.

Building GHC Building GHC is a rather complex job that in-
volves multi-stage compilation in which a stage-1 compiler is used
to build a stage-2 compiler, and so on. It is critical that our mod-
ifications do not break GHC’s own functionality during the build
process. However, some of our modifications such as the changes
to the integer-simple library pose a challenge: we either have to
fully implement the new integer primitives in GHC itself, or risk
having broken libraries that prevent the next stage from building.
Our (not entirely satisfactory) solution is to hack the compilation
process to have GHC compile both the modified and unmodified
versions of integer-simple, install binaries from unmodified version
to support continuing building GHC, and install external cores and
stub-only libraries from the modified version to support HRC. Care
must be taken to make sure both versions export exactly the same
set of names, and mismatching internal names do not accidentally
leak into header files as they are randomly generated by GHC. Mis-
matches in function names will either produce errors of undefined
symbols, or lead HRC to retrieve a wrong definition from the Core
files, which is even more hiderous. There are also a number of other
modifications to the base library that require this sort of handling
due to differences in runtime support.

Immutable Arrays MIL is based around immutable arrays with
initializing writes, whereas the GHC array and vector libraries

tend to create mutable arrays, initialize them with writes, and then
freeze the mutable array to an immutable array type. This freeze
operation just returns its input but with a different type. Although
MIL is capable of handling mutable arrays and repeating writes, our
optimizations are all targeted at immutable arrays and initializing
writes. Therefore, we have modified GHC’s vector library to target
our immutable arrays. These modifications include adding new
primitive types in GHC for our immutable arrays (GHC has its
own immutable arrays, but we decided to keep those separate),
adding new primitive operations for creating without initialization,
initializing writes, length, and reading of these new immutable
arrays, and modifying the vector library itself to use these new
primitive types and operations.

3.2 Architecture of HRC

The overall architecture of HRC is shown in Figure 1. Compilation
begins by first invoking the modified GHC executable to compile
the input program to external core, which is then read back into
HRC and parsed into an internal representation of Core called
CoreHs. A dependence analysis is performed on this representation
to determine what other Haskell modules are required to complete
the program. Since our modified GHC has already compiled and
installed GHC libraries along with their external Core files, they
can then be read into HRC based on the results of the dependence
analysis. This process proceeds transitively until the full Haskell
program is read in. This process also serves to determine any
required linking options for external libraries.

The result of this process is a representation of the entire Haskell
program that is to be compiled, in a representation fairly similar
to that used by GHC itself. After some initial cleanup work, this
program is passed through two additional representations before
being translated to MIL, the main optimization IR discussed in
Section 2.2.

3.3 Lazy A-Normal Form

The first transformation in the HRC frontend translates the CoreHs
code into a lazy A-Normal form [8] language called ANormLazy.
Some cleanup work such as primitive and constructor saturation is
performed as part of this translation. The primary transformation
performed on this intermediate representation is a strictness analy-
sis pass.

Strictness Analysis The purpose of a strictness analyzer is to
annotate variable bindings with strictness information. A function
f is strict in its argument if and only if f⊥ = ⊥. Instead of
calculating on the actual value domain, an abstract interpretation
of f operates on an abstract domain of two or multiple points.
However, due to the limitation of modular compilation, GHC only
keeps limited information of the strictness of each function in the
interface (.hi) file, and therefore sacrifices accuracy in exchange
for efficiency and modularity.

Since our compiler functions as a whole program compiler, we
suspected that there might be an opportunity to uncover strictness
properties of the source program that might have been missed dur-
ing modular compilation. As an experiment, we have implemented
a strictness analysis pass for the ANormLazy IR. The analysis takes
an abstract interpretation approach over an abstract representation
derived from ANormLazy called AbsCore. Our initial implementa-
tion uses a relatively simple algorithm described by Peyton Jones
and Partain [22], but we hope at some point to replace it with a
more complex algorithm such as that used by Jensen et al [12] to
better handle higher-order functions. This optimization has proved
less effective than we had hoped, but we continue to feel that there
are opportunities to be had in this domain, in part because of our ex-
periences with simple ad hoc strictness analyses performed in later
phases of the compiler.
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3.3.1 Strict A-Normal Form

The final and most significant intermediate form change in the
HRC frontend is the translation from the ANormLazy language
in which laziness is implicit, to a strict A-Normal form language
called ANormStrict in which laziness is represented explicitly. The
ANormStrict IR provides primitive thunks for suspending the com-
putation of terms and explicit eval operations for forcing a thunk
and memoizing its result. This is usually regarded as a more con-
ventional treatment of handling laziness, as compared to the opti-
mized design in GHC’s STG machine [25]. Bolingbroke and Pey-
ton Jones have also proposed a strict Core for GHC [6], advocating
the benefits of representing laziness explicitly.

Because variable bindings in ANormLazy are already anno-
tated with strictness information, translating from ANormLazy to
ANormStrict is a relatively straight-forward process. For each strict
expression binding in the lazy language, the strict code must evalu-
ate the expression to a value, bind a fresh variable to the result, and
wrap the fresh variable in a thunk bound to the original variable.
For each lazy binding in the lazy language, the strict code simply
constructs a thunk containing the translated expression and binds
the original variable to it. Unboxed primitive bindings are simply
translated directly to strict bindings. Case constructs which force
the computation of thunks are translated into uses of the ANorm-
Strict primitive eval construct which computes, memoizes, and re-
turns the results.

We choose in this approach to wrap all boxed values explicitly
in thunks, even when they are values. An alternative approach is to
allow values to be subsumed into the class of thunks: that is, allow-
ing strict bindings to simply bind the value to the original variable.
In this case, the eval primitive must be prepared to dynamically
distinguish between values and thunks. By choosing to wrap all
boxed values explicitly, we allow our backend to choose whether
to represent indirections explicitly, or to simply treat them as static
coercions to the thunk type (relying on the runtime to distinguish
between values and indirections). Our runtime can be configured to
treat indirections in either manner simply by passing a flag to the
compiler.

3.3.2 ANormStrict optimizations

While the main body of optimization is performed after translation
to MIL code, it has proved very beneficial to implement a small
set of cleanup and language specific optimizations in the frontend.
The first reason for this is that the translations through the various
frontend intermediate forms can be made much simpler if they
are not required to produce perfectly “clean” code. It is often
convenient to permit variable-to-variable moves to be introduced,
or to use wrapper functions to ensure primitive saturation, etc. This
kind of convenience code is easily eliminable, but interferes with
the effectiveness of the closure converter if not actually eliminated.

The second reason for performing optimizations at the ANorm-
Strict level is that certain language specific optimizations are sim-
pler and more effective when performed at that level, both because
of the more structured nature of the intermediate representation,
and because of additional language specific invariants of Haskell
programs. For example, strictness properties are much simpler to
compute at the ANormStrict level, in part because the Haskell ex-
ception semantics [24] allows more code motion than is available
after translation to MIL.

There are three main groups of optimizations performed on the
ANormStrict language: general shrinking simplifications, uncurry-
ing, and strictness. Shrinking simplifications are implemented us-
ing a fairly standard down and up traversal of the intermediate
representation, performing dead code elimination, shrinking reduc-
tions, copy and constant propagation, thunk specific optimizations,
and various other minor code improvements.

The uncurrying optimization is a simple syntactic optimiza-
tion which rewrites curried functions as wrappers around uncurried
functions, and replaces all saturated known applications of each
curried wrapper by a call to its uncurried version. This approach
was easy to implement and gave good improvements in runtime.
However, the overhead of curried functions continue to be an issue
in some benchmarks, suggesting that more sophisticated control-
flow analysis based techniques [5] might be beneficial (either at
the ANormStrict level, or in MIL). We have also considered ex-
perimenting with dynamic techniques such as those described by
Marlow and Peyton Jones [15], but would prefer to explore static
options first, since dynamic options impose an overhead even when
they are not used.

The strictness optimization is a very simple but surprisingly
effective dataflow based approach that attempts to find (inter-
procedurally) for each thunk variable the earliest program point at
which it is guaranteed to be evaluated along all subsequent paths.
If a thunk is guaranteed to be evaluated on all paths from its defini-
tion, then it can be evaluated eagerly, the thunk statically replaced
with an indirection, and all syntactically visible uses replaced with
the underlying computed value (the unboxed version). Otherwise,
the thunk can be evaluated at the earliest point at which it is guar-
anteed to be evaluated and all subsequent syntactic uses (including
arguments to known functions) replaced with the unboxed version.
Some care must be taken to avoid incorrectly permuting compu-
tations that exhibit control effects (such as non-termination) with
effectful code, since the GHC state passing representation does not
sequence control effects with input/output effects.

The analysis for the strictness optimization traverses the pro-
gram in a down and up fashion, performing a recursive top down
analysis and then summarizing the results of the analysis on the re-
turns from the recursive calls. Each function body is analyzed as
it is reached to produce a procedure summary indicating in which
arguments and free variables it is strict. Procedure summaries are
used to incorporate strictness information on function arguments
and free variables when calls to known functions are encountered.
Summaries for recursive (or mutually recursive) functions are com-
puted by iteratively re-analyzing until a fixed point is reached. The
strictness optimization also performs dead code, dead argument,
and dead field elimination simultaneously with strictness since the
analysis required is essentially identical.

These optimizations were easy and quick to implement and
have proved effective in eliminating a fair bit of the obvious cruft
and low-hanging fruit. There remain substantial opportunities for
further optimization at this level.

3.3.3 Closure conversion

One of the primary requirements for the translation from the
ANormStrict language to MIL is the representation of functions
(and thunks) as closures. In principle this is straightforward: a
valid implementation is simply to compute the set of free variables
of every function and place those in its closure. However, substan-
tial benefit can be obtained by refining this in a number of ways.

Firstly, closure size can be reduced substantially by choosing to
represent globally available small objects as static globals, which
do not need to appear in closures. We refer to this process as global-
ization. While it is possible to perform globalization independently
from closure conversion, the result is less effective than performing
the analysis simultaneously with the closure analysis. The reason
for this is that a closure can only be represented by a global if all
of its free variables are globals, which in turn may depend on the
choice of which closures are represented as globals. Proper global-
ization then is mutually dependent on closure conversion, and con-
sequently we perform both analyses simultaneously.

111



Secondly, many closures for non-escaping functions can be
eliminated entirely in the case that all free variables for the func-
tion are available (in the sense of either being directly in scope or
in scope via an enclosing closure, or being global) at all call sites.
Such functions can avoid having closures allocated at all, instead
taking their arguments directly as additional parameters at each call
site (a so-called flat call). Since flat-called functions do not require
a closure, the choice of which functions to flat-call is again mutu-
ally dependent on globalization. This formulation of flat-calling is
safe for space, since it never adds free variables to other closures
in which they were not already present, and does not increase the
live-range of variables.

Finally, call graph control-flow information that is apparent in
the pre-closure converted program becomes obfuscated in the post-
closure converted program if some effort is not made to preserve
it during closure conversion. The MIL representation supports the
annotation of call sites with the set of code pointers which may
(conservatively) reach the call site: this is sufficient to preserve the
pre-closure conversion control-flow information. It is straightfor-
ward to make the closure conversion algorithm preserve informa-
tion matching up function and thunk variables projected from clo-
sures to the original function or thunk definition to which they cor-
respond, and hence to use this information to build the initial call-
graph annotations in MIL. While subsequent control-flow analysis
may improve these annotations further, choosing not to lose the
already present control-flow information proves very beneficial in
bootstrapping the process.

Implementing this small set of extensions to a basic closure con-
version algorithm provided significant improvements in the perfor-
mance of the generated code for relatively small implementation
effort. More sophisticated control-flow analysis based approaches
have been considered, but we have not yet had the resources to ex-
periment with this. One key limitation of our approach is that we
do not globalize thunks except in the case that they are statically
known to be values. In general, thunk globalization is not safe for
space, since a thunk might compute and memoize an arbitrarily
large object which as a global would remain live for the duration
of the program. GHC solves this problem elegantly by using the
garbage collector to decide dynamically which globals to enumer-
ate and hence permitting objects computed by global thunks to be
garbage collected [14]. We do not currently support this, and con-
sequently we avoid globalizing all computed thunks.

3.4 Limitations/unimplemented

While our goal is to support as much of the GHC functionality as
possible (including GHC extensions to Haskell), there are several
known deficiencies in this regard (and of course, possibly unknown
ones as well). The notable limitations that we are aware of are as
follows:

1. We do not currently implement the correct semantics for propa-
gating exceptions through thunks. Re-evaluating a thunk which
exited with an exception will produce an error instead of re-
raising the exception. Addressing this could have some adverse
effect on the performance of thunk intensive code, but is largely
irrelevant to the class of benchmarks on which we have focused,
which have little or no laziness in performance critical sections.

2. Asynchronous exceptions are not supported. We do not cur-
rently see any path to addressing this limitation given our lan-
guage agnostic runtime representation.

3. Although we have implemented many GHC primitives re-
lated to multi-threading and concurrency, we do not support
lightweight threads, or GHC sparks, partly because of the com-
plexity involved in designing their schedulers. We choose to

map each forkIO invocation to creating a new thread using
third party libraries such as pthread (POSIX thread).

4. There are still some known quirks related to the foreign-
function interface and linking. In some infrequent cases, GHC
decides to inline a foreign call, preventing us from correctly
computing the external library to which the code must be
linked.

4. Performance
We measure the performance of HRC using a set of benchmarks
from a number of sources. The majority of them were taken from
the nofib benchmark suite [18] which was designed to compare the
performance of different Haskell systems. We tried to select a bal-
anced set of nofib benchmarks, both lazy and strict, ranging from
list manipulation, to big number arithmetic, to array computations.
Many of the nofib benchmarks were written more than 20 years
ago, and they often do not make use of modern GHC libraries such
as Data.Vector, but we still feel that they are representative of typ-
ical Haskell programs, especially when we consider their runtime
behaviors.

Besides nofib programs, we have also added a number of mod-
ern performance oriented Haskell programs mostly taken from the
graphics, scientific computing, and finance spaces. These bench-
marks have been our primary focus in tuning the optimizations
in our compiler. Many of these benchmarks spend much of their
time in array computations utilizing either the vector or repa li-
braries [13]. These benchmarks are often relatively strict in nature,
either explicitly through programmer annotation or implicitly via
compiler optimization. For those benchmarks written by us, we
have generally tried our best to maintain an idiomatic functional
style rather than littering the programs with lower-level imperative
code.

All benchmark tests were conducted on a 2.7GHz Intel Xeon
E5-4650 machine running Windows Server 2008. All benchmarks
were compiled to 32-bit binaries using a standard GHC 7.6.1, GHC
7.6.1 with LLVM 2.9 backend, and HRC with our modified GHC
7.6.1 frontend and Intel C/C++ Compiler version 12.0.4.196. Our
measurements record the wall clock time spent by each benchmark
in kernel computation: i.e. without including the time taken to read
input or write output. We take the average from a number of runs
of each configuration of each benchmark.

All three GHC compilers (standard, LLVM, and our modified
version) were invoked with the -O2 option and the -msse2 option.
When using LLVM, we also passed the -optlo-O2 option and the
-optlo-std-compile-opts option to GHC. For certain bench-
marks we have further tuned the optimization flags, usually accord-
ing to suggestions provided by the benchmark authors. The same
flags are passed to our modified GHC and to the standard GHC ex-
cept in some limited cases where a flag was beneficial to GHC but
not to HRC. To eliminate SIMD vectorization as a factor in perfor-
mance, HRC was run without enabling the vectorization [21] pass.
HRC/FLRC supports compilation with both a strict floating point
model in which only value-safe IEEE compliant reductions are per-
formed and in which source level precision is maintained; and a
relaxed model in which non value-safe floating point optimizations
(such as re-association) are performed, and in which the underly-
ing C compiler is allowed to compute results using more or less
precision than specified by IEEE semantics. For our benchmarks,
all compilation was done with the strict floating point model.

All executables were run with a 1024 megabyte heap. For the
GHC builds, this was done by passing the runtime arguments -
H1024m -M1024m. This choice seemed to provide the best perfor-
mance across a range of benchmarks, but was not highly tuned. The
HRC executables were run with the same heap restrictions, and no
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Figure 2. Kernel Execution Time Relative to GHC (smaller is better)

further tuning of the heap options was performed. For a few bench-
marks, we required a larger stack size to be set at runtime than our
standard default.

Figure 2 shows the comparison of normalized kernel execution
time relative to standard GHC of all benchmarks. The normalized
kernel time is computed by dividing the measured run time for
a given configuration by the run time of standard GHC with its
native backend (not LLVM). Lower is better on this graph, and
performance parity with GHC corresponds to the value 1 on the
y-axis. Bars are shown for each program as compiled by GHC with
the LLVM backend, and by HRC. The benchmarks are sorted by
the relative performance of the latter, which makes it clear which
ones are worse than GHC, which are better, and by how much.
Overall, the geometric mean of HRC is at parity when compared to
the GHC LLVM configuration, which in turn is about 10% faster
than the standard GHC with native backend.

We must also note that all GHC+LLVM performance numbers
presented here were obtained from programs compiled by LLVM
version 2.9 instead of a more recent version. This is because 2.9
is the only LLVM version that works reliably for all benchmark
programs on 32-bit Windows. Using any other LLVM version from
3.0 to 3.3 would produce a segmentation fault error for a number of
programs at runtime. For those that did run correctly, we noticed
a 5% overall performance improvements in the geometric mean
(relative to GHC with native backend) when LLVM 3.3 is used in
place of LLVM 2.9.

To the left of Figure 2 are programs that perform better with
GHC. Generally speaking, these tend to be programs written mak-
ing extensive use of lists or other lazy data-structures that are
difficult to make strict. Based on our qualitative analysis of the
benchmarks, there seem to be a number of reasons why GHC out-
performs our compiler on these benchmarks.

First and foremost the GHC runtime is highly tuned for execut-
ing lazy code and curried functions. Many of the programs on the
left side of the graph are those for which HRC is unable to eliminate
thunking and currying, result in higher-allocation (due to currying)
or more overhead due to our more heavyweight thunk implementa-
tion. We have some quantitative evidence in particular for the latter
in that benchmarks on the left side of the graph tend to be particu-
larly sensitive to thunk-representation choice (we have several such
choices). We believe that a more sophisticated approach to elimi-
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Figure 3. Kernel Execution Time Relative to GHC for Selected
Benchmarks (smaller is better)

nating currying [5] than we have so far attempted might help. There
is also some room for improvement in our thunk representation.

A second key performance differentiator between GHC and
HRC on these benchmarks is the match between the allocation
behavior and the underlying garbage collection approach. For a
number of benchmarks on which we perform poorly, we observe
that HRC compiled programs spend substantially more time in the
garbage collector. This is partly due to using less efficient object
representations in our runtime—our objects are larger and hence
we allocate more and stress the GC more. However, even after
accounting for this it is apparent that the design choices made
by the GHC GC are much better suited to the allocation profile
of many Haskell programs. The mark-sweep-compact algorithm
used by the HRC TGC incurs substantial overhead when used with
programs that allocate at such a high rate, with large amounts of
fragmentation, and with relatively large live object counts.

On the right side of Figure 2 are programs on which HRC per-
forms better than GHC. We present a selection of these separately
in Figure 3. These benchmarks are generally performance-oriented
Haskell programs. They include several example programs from
the Repa examples package (such as blur and sobel image process-
ing benchmarks), several computationally intensive mathematical
kernels (e.g. matrix-mult, finlay), some small micro-benchmarks
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(e.g. dot-product, vectorise-add and vectorise-sum), some gen-
eral throughput oriented benchmarks (e.g. nbody, convolution,
1d-convolution), and a variety of other computationally intensive
benchmarks. The geometric mean for this selected group shows that
HRC is about 2× faster than GHC with LLVM, and 3× faster than
standard GHC.

4.1 Performance analysis

It is difficult to quantify contributions of specific optimizations
to benchmark performance, since almost all optimizations inter-
act synergistically with others. Nonetheless, we believe that inter-
esting insights into the contribution of the various optimizations
can be obtained by selectively eliminating one optimization (or set
of optimizations) at a time, and measuring the resulting perfor-
mance penalty. We have performed a series of such experiments
using the subset of the benchmarks chosen for Figure 3 plus the
galois raytracer benchmark. In the following discussion, we have
measured performance with an optimization removed and added
back in, and report the percent speedup of adding back in.

The backend C compiler optimizations are crucial for perfor-
mance. Comparing no optimization to full optimization, we ob-
serve speedups ranging from 41% and 91%, with a geometric mean
across the benchmarks of 70%. Much (but not all) of this bene-
fit can be obtained with the simple -O1 level optimizations. Com-
paring this level of optimization to full optimization we observe
speedups ranging from -6.5% to 32%, with a geometric mean of
8%. Clearly there are substantial benefits provided from the full
level of optimization, but on average it seems that more limited op-
timization and code generation can provide adequate performance.

Comparing the compiler with the entire suite of MIL optimiza-
tions disabled to the standard configuration, we observe that the
MIL optimizations provide between a 20% and 98% speedup, with
a geometric mean of 75%. We break this down further by disabling
various of the specific optimizations within the MIL pipeline dis-
cussed in Section 2.2. Because the MIL optimizations are highly
synergistic, these experiments are somewhat harder to interpret, but
nonetheless interesting. The contification optimization provides a
speedup ranging from 0% to 97%, with a geometric mean of 62%.
That these numbers are close to the speedups obtained by the en-
tire MIL pipeline reflects in part the fact that the contification op-
timization is a crucial enabling optimization for all of the MIL op-
timizations. The flow analysis based representation optimizations
provide between a -6.1% and 97% speedup, with a geometric mean
of 25%. The experimental thunk optimizations discussed at the end
of Section 2.2 provide a speedup of between -12% and 97%, with a
geometric mean of 20%. The loop invariant code motion pass pro-
vides only small benefits, ranging between -1.9% and 5.9%, with a
geometric mean of 0.32%.

Our experimental strictness analysis on the ANormLazy repre-
sentation provides us speedup between -3.9% and 11%, with a ge-
ometric mean of 0.82%. The ad hoc strictness at the ANormStrict
level provides between -6.7% and 97% speedup, with a geomet-
ric mean of 23%. We suspect that the significantly better speedups
provided by the ad hoc strictness relative to our ANormLazy strict-
ness most likely reflect its position in the phase ordering after other
simplifications have been performed, but do not have strong ev-
idence for this. The uncurrying optimization in the ANormStrict
optimizer provides between a -5.3% and a 29% speedup, with a
geometric mean of 5.6%. Unfortunately, an outstanding compiler
bug prevents us from fully disabling the remaining ANormStrict
optimizations for measurement.

These numbers provide some indication of the relative impor-
tance of the various components of the compiler pipeline. Some
optimizations clearly play a crucial role in achieving any perfor-
mance at all with our stack, while others contribute significantly

to certain benchmarks and not at all to others. Qualitatively, we
have observed that our compiler is often able to make small but
crucial improvements to key inner loops in these programs that re-
sult in significant performance gains. Examples include the elim-
ination of uses of laziness, improved representations for runtime
data-structures (e.g. unboxing), hoisting of code out of loops, and
elimination of unnecessary branches. For most of the programs in
Figure 3, our compiler is able to turn the performance critical sec-
tions into almost entirely local control-flow, for which our com-
piler is well-tuned. For certain of these benchmarks (notably the
1d-convolution benchmark), it is striking the extent to which dis-
abling any one of a number of optimizations eliminates almost all
performance improvements from other optimizations.

The performance of many programs included in Figure 3 can
be significantly further improved by HRC using auto vectoriza-
tion [21] on SIMD-capable hardware. We have been careful not
to include this optimization in our performance study here, since
we wish to focus on establishing a baseline sequential comparison.

While the overall performance results achieved so far are mixed,
we believe that the HRC experiment provides valuable data about
tradeoffs and opportunities that lie in the different design choices
available to compiler implementers. We also believe that this ex-
periment suggests that the limits of Haskell performance have not
been reached by existing compiler technology.

4.2 Compile Time

Our compiler has not been engineered for compilation time, and
there are numerous known opportunities to speed up its perfor-
mance. However, design choices were made with the intention of
providing good scalability up to very large programs. While many
of these benchmarks are textually small, they pull in very large sets
of libraries that must be compiled by HRC in whole. If we consider
a pretty-printed Core IR (after dependence analysis and pruning
of unused code) as input, on this set of benchmarks, the program
size varies between 50k to 180k LOC (lines-of-code), and compile
time ranges from 1 minute and 34 seconds to 9 minutes. Summed
over all of these benchmarks, approximately 27% of the compile
time was spent in the frontend passes (including the GHC fron-
tend and those labeled HRC in Figure 1), 49% was spent in MIL
passes, 22.5% in the backend Pillar and C compilers, and 1.5% in
the linker.

5. Discussion
We did not set out to write a Haskell compiler, but came from the
perspective of adapting an existing functional language compiler,
hoping for an interesting experiment to see if our separately devel-
oped techniques could be applied to Haskell. Many of the choices
that we made, were made in the context of that previous language,
and were not made because we thought they would be best for
Haskell. But by this experiment, we get to see to what extent they
are, or are not, reasonable choices for compiling Haskell.

Reusing GHC was clearly a big win. The effort involved in
building a lexer, parser, and type checker for Haskell is immense,
not to mention some sort of reasonable standard library. GHC has
all this plus high-level optimizations and can output a small in-
termediate representation. Our experience with reusing GHC was
mostly positive. External Core is indeed easy to use as the starting
point for a Haskell backend. GHC’s primitives are not so straight-
forward to implement and some impedance matching is necessary.
Apart from the known limitations described in section 3.4, HRC
is able to compile and correctly run most, if not all, nofib bench-
marks, as well as a good portion of GHC testsuites. Popular Haskell
libraries such as repa, parsec, monad-par, criterion, etc., are also
supported with little or no modification.
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We chose to build a whole-program compiler based mostly on
an SSA-based CFG-based intermediate representation and opti-
mizations. This choice was inspired by MLton [30], which showed
the benefits of that approach for functional languages, and we be-
lieve that we benefit from some of these advantages. We chose to
use a high-level object model based on initializing writes in this
low-level of control-flow representation. We have many optimiza-
tions that exploit immutability properties and that in combination
with traditional loop optimizations can do things that optimizations
at higher levels of representation cannot. Our optimizations are not
meant to replace those at a higher level of representation, and we
clearly benefit from the high-level optimizations of GHC; instead
they are complimentary, and our performance data clearly show
they can be very beneficial in some classes of applications.

We chose, for our previous language, to use a conventional run-
time and object model, and not to tailor their design to the lan-
guage. We decided to stick with this choice for Haskell, in con-
trast to GHC’s STG machine and GC. Our experience with these
choices was mixed. In many Haskell programs we can overcome
the overheads of not using a tailored runtime and GC, but for some,
we clearly suffer compared to GHC. Our GC was developed for a
strict, mostly pure, functional language, and works well in that con-
text. Haskell, however, from the perspective of garbage collection
is not mostly pure, mutating heavily if laziness is used extensively.
We had some previous experience with a GC for Java, but Haskell,
in contrast to Java, also has a high allocation rate. Thus our experi-
ence indicates that the high mutation and high allocation rates mean
that choices that might work well for other languages do not work
well for lazy functional languages. GHC clearly has made a care-
ful set of design choices for its GC and dramatically out-performs
our GC on a number of programs. While we do not have direct
evidence, we also suspect that when extensive currying and partial
application are used, GHC’s STG machine approach has substantial
benefit.

We chose to use Pillar to separate our compiler from low-
level code generation. Pillar, like C--, is intended to provide high-
level language implementers with a target that is portable and han-
dles issues like register allocation, instruction selection, instruction
scheduling, and optimization for the target architecture. On mod-
ern platforms such issues are important to address well, and take
considerable effort to do and to do well, and that effort has to be
repeated anew for each target platform. An infrastructure like C--,
Pillar, or LLVM is a big win for high-level language developers.

The original vision for Pillar was to support several high-level
languages and we originally implemented a native compiler for
Pillar. That vision never materialized, and for completely non-
technical reasons we abandoned our native Pillar compiler and
wrote a converter to C. We learned two lessons from that experi-
ence. First, while converting to C has overheads and does not per-
form as well as a native compiler, those overheads are not that high.
Second, we benefit a lot from using the Intel C compiler. Lots of
effort goes into the code generation part of the Intel compilers, and
the knowledge of our processors and their microarchitectures in-
forms the low-level optimizations. Furthermore, the compiler con-
tinually tracks newer versions of our processors, and provides us
with the performance benefits available from specifically targetting
the processor being used. We observe that GHC gets similar bene-
fits from using the LLVM infrastructure.

In summary the lessons we learned are:

• Reusing GHC as a frontend is a good idea. External core is easy
to use. Reusing GHC’s libraries is doable, but less easy.

• Low-level control with high-level object model representa-
tions exploiting knowledge and invariants of the high-level lan-

guage provides benefits that functional languages implementers
should consider.

• Separating allocation from initialization using initializing writes
is a powerful technique for lowering immutable objects to a
lower level where additional optimizations and transformation
can be applied.

• The overheads of not using a specialized runtime such as
the STG machine and GHC’s GC can be overcome on many
Haskell programs, but are important to some.

• Eliminating thunks from hot loops is critical to achieving high-
performance for Haskell programs.

• An infrastructure for separating high-level language implemen-
tation from low-level code generation is very beneficial for
high-level language implementers.

• There are overheads to compiling through C, but with careful
design these can largely be overcome. In turn, the benefits
provided by the industrial strength code generation of modern
C compilers such as Intel’s can be very substantial. An Intel
compiler for Pillar or C-- would obviously be preferable.

6. Related and Future Work
Besides GHC, there are a number of other compilers and/or inter-
preters for Haskell including UHC [7], JHC [17], and a few others
that are no longer maintained.

UHC supports most of Haskell 98 standards with some exten-
sions. It also employs multiple backends, including an interpreter, a
whole-program compilation backend called GRIN (Graph Reduc-
tion Intermediate Notation) that eventually outputs machine code,
and some other ones including a Javascript backend. UHC uses a
heap “point-to” analysis on GRIN to eliminate unknown control
flow due to thunk evals. The MIL IR used by our compiler is at
a slightly lower level than GRIN because it is based around ex-
plicit basic blocks. UHC is also known for its novel use of Attribute
Grammar (AG) and an aspect oriented internal organization, while
we take a more traditional multi-pass and multi-IR compiler ap-
proach. JHC is another Haskell compiler with many experimental
features including a unique class implementation and region infer-
ence among others. It also uses a variant of GRIN as one of its
intermediate representations.

Both UHC and JHC aim to compile Haskell from source with
their own implementations of type analysis, Haskell extensions,
high level transformations, etc., and thus they are not fully inter-
operable with GHC, Haskell’s defacto standard implementation.

GHC itself has gone through a lot of changes over the years,
gaining a highly-tuned runtime and sophisticated garbage collec-
tor, and a LLVM backend, among others. The Strict Core proposal
for GHC [6] unfortunately was not implemented in GHC’s main
branch due to its potential impact to the already complicated sys-
tem. We make use of both a lazy and a strict ANorm IR, and the
latter bears many similarities to the Strict Core.

GHC’s native backend translates from Core to STG, and then to
Cmm, a variant of C--, which was designed to be “portable assem-
bly” that eases translation from high-level languages to machine
code. It has a simple machine-level type system, supports tail calls,
and has interfaces for garbage collection and exception handling.

While C-- strives to be small, simple, and portable, LLVM aims
to be comprehensive, multi-purpose, and portable. Due to its large
collection of tools and ease of use, LLVM is becoming a popular
choice among compiler writers. Even GHC has a LLVM backend
that translates from Cmm to LLVM’s IR. LLVM’s IR is control flow
and SSA based, which is indeed very similar to MIL except that
LLVM IR is more assembly like, and MIL is at a slightly higher
level. While the LLVM IR also maintains static type information,
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MIL has more elaborate meta-data and types, as well as effect
annotations. LLVM now also supports GC implementation through
a compiler plug-in. Terei and Chakravarty give a more detailed
comparison between Cmm and LLVM [28].

There are also other high-level virtual machines such as Mi-
crosoft’s Common Language Runtime (CLR) and the Java Virtual
Machine (JVM) that provide portable and high-performance com-
piler backend. Some other functional languages, e.g., Scala and
Closure, have been targeted to these virtual machines rather than
to real hardware. These virtual machines usually provide certain
modern features such as memory safety and GC, but they have ab-
stracted away many hardware features to achieve portability. HRC
was designed to make best use of Intel hardware through both high-
level and low-level optimizations, and hence we have not consid-
ered targeting CLR or JVM.

Aside from focusing on sequential performance in compiling
lazy languages, we have also experimented with SIMD parallelism
through auto vectorization [21] and looked at performance for
multicores and Intel’s Xeon Phi co-processor [20]. Our future work
will continue to investigate these topics and exploit more hardware
features such as integrated GPUs.

7. Conclusion
Being one of the most advanced functional-language compilers,
GHC is hard to beat in terms of its feature set, performance, and
robustness. By leveraging GHC itself as a frontend, we take ad-
vantage of GHC’s high-level optimization before Core, a lazy IR,
and then we focus our effort on compiling Core to MIL, a strict
IR. Through a multitude of aggressive optimization passes, we
produce good-quality low-level imperative code for performance-
oriented programs, and overcome the lack of a specialized runtime
for a lazy language. Along the way, we have learned many lessons
about the pros and cons of various design and implementation
choices, and demonstrated that a good compiler can achieve na-
tive machine-level performance for functional programs typically
composed through high-level abstractions. Properties of functional
languages such as type safety and immutability by default are also
crucial to many of these optimization techniques, not easily obtain-
able in compiling traditional imperative languages. We hope our
descriptions are useful to future Haskell implementers, and provide
them with options to consider. We also hope that our data demon-
strates that the last word on Haskell performance is yet to be said.
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