
Native Offload of Haskell Repa Programs to Integrated GPUs

Hai (Paul) Liu
with Laurence Day, Neal Glew, Todd Anderson, Rajkishore Barik
Intel Labs. September 28, 2016

General purpose computing on integrated GPUs

More than 90% of processors shipping today include a GPU on die.

Lower energy use is a key design goal.

The CPU and GPU share physical memory (DRAM), may share
Last Level Cache (LLC).

(a) Intel Haswell (b) AMD Kaveri

2 September 28, 2016

GPU differences from CPU

CPUs optimized for latency, GPUs for throughput.

• CPUs: deep caches, OOO cores, sophisticated branch predictors

• GPUs: transistors spent on many slim cores running in parallel

Single Instruction Multiple Thread (SIMT) execution.

• Work-items (logical threads) are partitioned into work-groups

• The work-items of a work-group execute together in near lock-step

• Allows several ALUs to share one instruction unit

Shallow execution pipelines, highly multi-threaded, shared
high-speed local memory, serial execution of branch codes, . . .

3 September 28, 2016

GPU differences from CPU

CPUs optimized for latency, GPUs for throughput.

• CPUs: deep caches, OOO cores, sophisticated branch predictors

• GPUs: transistors spent on many slim cores running in parallel

Single Instruction Multiple Thread (SIMT) execution.

• Work-items (logical threads) are partitioned into work-groups

• The work-items of a work-group execute together in near lock-step

• Allows several ALUs to share one instruction unit

Shallow execution pipelines, highly multi-threaded, shared
high-speed local memory, serial execution of branch codes, . . .

3 September 28, 2016

GPU differences from CPU

CPUs optimized for latency, GPUs for throughput.

• CPUs: deep caches, OOO cores, sophisticated branch predictors

• GPUs: transistors spent on many slim cores running in parallel

Single Instruction Multiple Thread (SIMT) execution.

• Work-items (logical threads) are partitioned into work-groups

• The work-items of a work-group execute together in near lock-step

• Allows several ALUs to share one instruction unit

Shallow execution pipelines, highly multi-threaded, shared
high-speed local memory, serial execution of branch codes, . . .

3 September 28, 2016

Programming GPUs with DSLs

Pros:
High-level constructs and operators.
Domain-specific optimizations.

Cons:
Barriers between a DSL and its
host language.
Re-implementation of general
program optimizations.

4 September 28, 2016

Programming GPUs with DSLs

Pros:
High-level constructs and operators.
Domain-specific optimizations.

Cons:
Barriers between a DSL and its
host language.
Re-implementation of general
program optimizations.

4 September 28, 2016

Alternative approach: native offload

Directly compile a sub-set of host language to target GPUs.

• less explored, especially for functional languages.

• enjoy all optimizations available to the host language.

• target devices with shared virtual memory (SVM).

This talk: native offload of Haskell Repa programs.

5 September 28, 2016

Alternative approach: native offload

Directly compile a sub-set of host language to target GPUs.

• less explored, especially for functional languages.

• enjoy all optimizations available to the host language.

• target devices with shared virtual memory (SVM).

This talk: native offload of Haskell Repa programs.

5 September 28, 2016

The Haskell Repa library

A popular data parallel array programming library.

import Data.Array.Repa as R

a :: Array U DIM2 Int
a = R.fromListUnboxed (Z :. 5 :. 10) [0..49]

b :: Array D DIM2 Int
b = R.map (^2) (R.map (*4) a)

c :: IO (Array U DIM2 Int)
c = R.computeP b

Maybe we can run the same program on GPUs too!

6 September 28, 2016

The Haskell Repa library

A popular data parallel array programming library.

import Data.Array.Repa as R

a :: Array U DIM2 Int
a = R.fromListUnboxed (Z :. 5 :. 10) [0..49]

b :: Array D DIM2 Int
b = R.map (^2) (R.map (*4) a)

c :: IO (Array U DIM2 Int)
c = R.computePcomputeG b

Maybe we can run the same program on GPUs too!

6 September 28, 2016

Introducing computeG

computeS :: (Shape sh, Unbox e)⇒
Array D sh e → Array U sh e

computeP :: (Shape sh, Unbox e, Monad m)⇒
Array D sh e → m (Array U sh e)

computeG :: (Shape sh, Unbox e, Monad m)⇒
Array D sh e → m (Array U sh e)

In theory, all Repa programs should also run on GPUs.

In practice, only a restricted subset is allowed to compile and run.

7 September 28, 2016

Introducing computeG

computeS :: (Shape sh, Unbox e)⇒
Array D sh e → Array U sh e

computeP :: (Shape sh, Unbox e, Monad m)⇒
Array D sh e → m (Array U sh e)

computeG :: (Shape sh, Unbox e, Monad m)⇒
Array D sh e → m (Array U sh e)

In theory, all Repa programs should also run on GPUs.
In practice, only a restricted subset is allowed to compile and run.

7 September 28, 2016

Implementing computeG

We introduce a primitive operator offload#:

offload# :: Int → (Int → State# s → State# s)
→ State# s → State# s

that takes three parameters:

1. the upper bound of a range.

2. a kernel function that maps an index in the range to a stateful
computation.

3. a state.

offload# is enough to implement computeG.

8 September 28, 2016

Implementation overview

HRC Intel Labs Haskell Research Compiler that uses GHC
as frontend (Haskell’13).

Concord C++ based heterogeneous computing framework
that compiles to OpenCL (CGO’14).

1. Modify Repa to implement computeG in terms of offload#.

2. Modify GHC to introduce the offload# primitive and its type.

3. Modify HRC to intercept calls to offload#.

4. In HRC’s outputter, dump the kernel function to a C file.

5. Use Concord to compile C kernel to OpenCL.

6. Replace offload# with call into Concord runtime.

9 September 28, 2016

Implementation overview

HRC Intel Labs Haskell Research Compiler that uses GHC
as frontend (Haskell’13).

Concord C++ based heterogeneous computing framework
that compiles to OpenCL (CGO’14).

1. Modify Repa to implement computeG in terms of offload#.

2. Modify GHC to introduce the offload# primitive and its type.

3. Modify HRC to intercept calls to offload#.

4. In HRC’s outputter, dump the kernel function to a C file.

5. Use Concord to compile C kernel to OpenCL.

6. Replace offload# with call into Concord runtime.

9 September 28, 2016

Implementation overview

HRC Intel Labs Haskell Research Compiler that uses GHC
as frontend (Haskell’13).

Concord C++ based heterogeneous computing framework
that compiles to OpenCL (CGO’14).

1. Modify Repa to implement computeG in terms of offload#.

2. Modify GHC to introduce the offload# primitive and its type.

3. Modify HRC to intercept calls to offload#.

4. In HRC’s outputter, dump the kernel function to a C file.

5. Use Concord to compile C kernel to OpenCL.

6. Replace offload# with call into Concord runtime.

9 September 28, 2016

Implementation overview

HRC Intel Labs Haskell Research Compiler that uses GHC
as frontend (Haskell’13).

Concord C++ based heterogeneous computing framework
that compiles to OpenCL (CGO’14).

1. Modify Repa to implement computeG in terms of offload#.

2. Modify GHC to introduce the offload# primitive and its type.

3. Modify HRC to intercept calls to offload#.

4. In HRC’s outputter, dump the kernel function to a C file.

5. Use Concord to compile C kernel to OpenCL.

6. Replace offload# with call into Concord runtime.

9 September 28, 2016

Implementation overview

HRC Intel Labs Haskell Research Compiler that uses GHC
as frontend (Haskell’13).

Concord C++ based heterogeneous computing framework
that compiles to OpenCL (CGO’14).

1. Modify Repa to implement computeG in terms of offload#.

2. Modify GHC to introduce the offload# primitive and its type.

3. Modify HRC to intercept calls to offload#.

4. In HRC’s outputter, dump the kernel function to a C file.

5. Use Concord to compile C kernel to OpenCL.

6. Replace offload# with call into Concord runtime.

9 September 28, 2016

Implementation overview

HRC Intel Labs Haskell Research Compiler that uses GHC
as frontend (Haskell’13).

Concord C++ based heterogeneous computing framework
that compiles to OpenCL (CGO’14).

1. Modify Repa to implement computeG in terms of offload#.

2. Modify GHC to introduce the offload# primitive and its type.

3. Modify HRC to intercept calls to offload#.

4. In HRC’s outputter, dump the kernel function to a C file.

5. Use Concord to compile C kernel to OpenCL.

6. Replace offload# with call into Concord runtime.

9 September 28, 2016

Implementation overview

HRC Intel Labs Haskell Research Compiler that uses GHC
as frontend (Haskell’13).

Concord C++ based heterogeneous computing framework
that compiles to OpenCL (CGO’14).

1. Modify Repa to implement computeG in terms of offload#.

2. Modify GHC to introduce the offload# primitive and its type.

3. Modify HRC to intercept calls to offload#.

4. In HRC’s outputter, dump the kernel function to a C file.

5. Use Concord to compile C kernel to OpenCL.

6. Replace offload# with call into Concord runtime.

9 September 28, 2016

Implementation overview

HRC Intel Labs Haskell Research Compiler that uses GHC
as frontend (Haskell’13).

Concord C++ based heterogeneous computing framework
that compiles to OpenCL (CGO’14).

1. Modify Repa to implement computeG in terms of offload#.

2. Modify GHC to introduce the offload# primitive and its type.

3. Modify HRC to intercept calls to offload#.

4. In HRC’s outputter, dump the kernel function to a C file.

5. Use Concord to compile C kernel to OpenCL.

6. Replace offload# with call into Concord runtime.

9 September 28, 2016

What is the catch?

Not all Repa functions can be offloaded.

The following restrictions are enforced at compile time:

• kernel function must be statically known.

• no allocation/thunk evals/recursion/exception in the kernel.

• only function calls into Concord or OpenCL are allowed.

Additionally:

• All memory are allocated in the SVM region.

• No garbage collection during offload call.

10 September 28, 2016

What is the catch?

Not all Repa functions can be offloaded.

The following restrictions are enforced at compile time:

• kernel function must be statically known.

• no allocation/thunk evals/recursion/exception in the kernel.

• only function calls into Concord or OpenCL are allowed.

Additionally:

• All memory are allocated in the SVM region.

• No garbage collection during offload call.

10 September 28, 2016

What is the catch?

Not all Repa functions can be offloaded.

The following restrictions are enforced at compile time:

• kernel function must be statically known.

• no allocation/thunk evals/recursion/exception in the kernel.

• only function calls into Concord or OpenCL are allowed.

Additionally:

• All memory are allocated in the SVM region.

• No garbage collection during offload call.

10 September 28, 2016

What is the catch?

Not all Repa functions can be offloaded.

The following restrictions are enforced at compile time:

• kernel function must be statically known.

• no allocation/thunk evals/recursion/exception in the kernel.

• only function calls into Concord or OpenCL are allowed.

Additionally:

• All memory are allocated in the SVM region.

• No garbage collection during offload call.

10 September 28, 2016

Benchmarking

A Variety of 9 embarrassingly parallel programs written using Repa.
A majority come from the “Haskell Gap” study (IFL’13).

Hardware:

Processor Cores Clock Hyper-thread Peak Perf.

HD4600 (GPU) 20 1.3GHz No 432 GFLOPs

Core i7-4770 4 3.4GHz Yes 435 GFLOPs

Xeon E5-4650 32 2.7GHz No 2970 GFLOPs

Average relative speed-up (bigger is better):

HD4600 (GPU) Core i7-4770 Xeon E5-4650

Geometric Mean 6.9 7.0 18.8

11 September 28, 2016

Benchmarking

A Variety of 9 embarrassingly parallel programs written using Repa.
A majority come from the “Haskell Gap” study (IFL’13).

Hardware:

Processor Cores Clock Hyper-thread Peak Perf.

HD4600 (GPU) 20 1.3GHz No 432 GFLOPs

Core i7-4770 4 3.4GHz Yes 435 GFLOPs

Xeon E5-4650 32 2.7GHz No 2970 GFLOPs

Average relative speed-up (bigger is better):

HD4600 (GPU) Core i7-4770 Xeon E5-4650

Geometric Mean 6.9 7.0 18.8

11 September 28, 2016

What we have learned

Laziness is not a problem most of the time for Repa programs.

12 September 28, 2016

Sample: ANormStrict IR
lv311252_ia2NL_tslam ^* = \ <; lv311232_ia2NL > →

let

<lv311233_s1a2NM_tsscr > = ghczmprim:GHCziPrim.noDuplicatezh

<lv5772_main:Main.ghczmprim:GHCziPrim.RealWorld0 >

lv311245_v8896^ = thunk <; >

let

<lv311234_v8896_tsscr > = ghczmprim:GHCziPrim.remIntzh

<lv311232_ia2NL , lv236843_main:Main.y1s36S >

<lv311235_v8896_tsscr > = ghczmprim:GHCziPrim.quotIntzh

<lv311232_ia2NL , lv236843_main:Main.y1s36S >

<lv311236_atmp > = n22_ghczmprim:GHCziTypes.Izh <lv311235_v8896_tsscr >

lv311237_v8893^ = thunk <; > <lv311236_atmp >

<lv322918_atmp > = n15_repazm3zi2zi2zi2:DataziArrayziRepaziIndex.ZCzi

<lv5929_main:Main.repazm3zi2zi2zi2:DataziArrayziRepaziIndex.ZZ111 ,

lv311237_v8893 >

lv311240_v8894^ = thunk <; > <lv322918_atmp >

<lv311241_atmp > = n22_ghczmprim:GHCziTypes.Izh <lv311234_v8896_tsscr >

lv311242_v8895^ = thunk <; > <lv311241_atmp >

<lv322921_atmp > = n15_repazm3zi2zi2zi2:DataziArrayziRepaziIndex.ZCzi

<lv311240_v8894 , lv311242_v8895 >

in <lv322921_atmp >

<lv311247_v8904_tsscr > = lv332264_main:Main.fa1ZZM_ubx <lv311245_v8896 >

<lv311250_v8904 > =

case lv311247_v8904_tsscr of

{n22_ghczmprim:GHCziTypes.Izh lv311248_xzha30Q →
let <lv311249_atmp > = ghczmprim:GHCziPrim.initUnboxedIntArrayzh

<lv311225_ipv1a222 , lv311232_ia2NL , lv311248_xzha30Q ,

lv311233_s1a2NM_tsscr >

in <lv311249_atmp >}

<lv311251_atmp > = (0 :: primtype #int)

in <lv311251_atmp >

lv311253_v8908^ = thunk <; > <lv311252_ia2NL_tslam >

<lv311254_sa1ZZT_tsscr > = ghczmprim:GHCziPrim.offloadzh

<lv236850_main:Main.nzhs36W , lv311253_v8908 , lv311230_ipv2a2NE >

13 September 28, 2016

Sample: ANormStrict IR
lv311252_ia2NL_tslam ^* = \ <; lv311232_ia2NL > →

let

<lv311233_s1a2NM_tsscr > = ghczmprim:GHCziPrim.noDuplicatezh

<lv5772_main:Main.ghczmprim:GHCziPrim.RealWorld0 >

lv311245_v8896^ = thunk <; >

let

<lv311234_v8896_tsscr > = ghczmprim:GHCziPrim.remIntzh

<lv311232_ia2NL , lv236843_main:Main.y1s36S >

<lv311235_v8896_tsscr > = ghczmprim:GHCziPrim.quotIntzh

<lv311232_ia2NL , lv236843_main:Main.y1s36S >

<lv311236_atmp > = n22_ghczmprim:GHCziTypes.Izh <lv311235_v8896_tsscr >

lv311237_v8893^ = thunk <; > <lv311236_atmp >

<lv322918_atmp > = n15_repazm3zi2zi2zi2:DataziArrayziRepaziIndex.ZCzi

<lv5929_main:Main.repazm3zi2zi2zi2:DataziArrayziRepaziIndex.ZZ111 ,

lv311237_v8893 >

lv311240_v8894^ = thunk <; > <lv322918_atmp >

<lv311241_atmp > = n22_ghczmprim:GHCziTypes.Izh <lv311234_v8896_tsscr >

lv311242_v8895^ = thunk <; > <lv311241_atmp >

<lv322921_atmp > = n15_repazm3zi2zi2zi2:DataziArrayziRepaziIndex.ZCzi

<lv311240_v8894 , lv311242_v8895 >

in <lv322921_atmp >

<lv311247_v8904_tsscr > = lv332264_main:Main.fa1ZZM_ubx <lv311245_v8896 >

<lv311250_v8904 > =

case lv311247_v8904_tsscr of

{n22_ghczmprim:GHCziTypes.Izh lv311248_xzha30Q →
let <lv311249_atmp > = ghczmprim:GHCziPrim.initUnboxedIntArrayzh

<lv311225_ipv1a222 , lv311232_ia2NL , lv311248_xzha30Q ,

lv311233_s1a2NM_tsscr >

in <lv311249_atmp >}

<lv311251_atmp > = (0 :: primtype #int)

in <lv311251_atmp >

lv311253_v8908^ = thunk <; > <lv311252_ia2NL_tslam >

<lv311254_sa1ZZT_tsscr > = ghczmprim:GHCziPrim.offloadzh

<lv236850_main:Main.nzhs36W , lv311253_v8908 , lv311230_ipv2a2NE >

13 September 28, 2016

Sample: ANormStrict IR
lv311252_ia2NL_tslam ^* = \ <; lv311232_ia2NL > →

let

<lv311233_s1a2NM_tsscr > = ghczmprim:GHCziPrim.noDuplicatezh

<lv5772_main:Main.ghczmprim:GHCziPrim.RealWorld0 >

lv311245_v8896^ = thunk <; >

let

<lv311234_v8896_tsscr > = ghczmprim:GHCziPrim.remIntzh

<lv311232_ia2NL , lv236843_main:Main.y1s36S >

<lv311235_v8896_tsscr > = ghczmprim:GHCziPrim.quotIntzh

<lv311232_ia2NL , lv236843_main:Main.y1s36S >

<lv311236_atmp > = n22_ghczmprim:GHCziTypes.Izh <lv311235_v8896_tsscr >

lv311237_v8893^ = thunk <; > <lv311236_atmp >

<lv322918_atmp > = n15_repazm3zi2zi2zi2:DataziArrayziRepaziIndex.ZCzi

<lv5929_main:Main.repazm3zi2zi2zi2:DataziArrayziRepaziIndex.ZZ111 ,

lv311237_v8893 >

lv311240_v8894^ = thunk <; > <lv322918_atmp >

<lv311241_atmp > = n22_ghczmprim:GHCziTypes.Izh <lv311234_v8896_tsscr >

lv311242_v8895^ = thunk <; > <lv311241_atmp >

<lv322921_atmp > = n15_repazm3zi2zi2zi2:DataziArrayziRepaziIndex.ZCzi

<lv311240_v8894 , lv311242_v8895 >

in <lv322921_atmp >

<lv311247_v8904_tsscr > = lv332264_main:Main.fa1ZZM_ubx <lv311245_v8896 >

<lv311250_v8904 > =

case lv311247_v8904_tsscr of

{n22_ghczmprim:GHCziTypes.Izh lv311248_xzha30Q →
let <lv311249_atmp > = ghczmprim:GHCziPrim.initUnboxedIntArrayzh

<lv311225_ipv1a222 , lv311232_ia2NL , lv311248_xzha30Q ,

lv311233_s1a2NM_tsscr >

in <lv311249_atmp >}

<lv311251_atmp > = (0 :: primtype #int)

in <lv311251_atmp >

lv311253_v8908^ = thunk <; > <lv311252_ia2NL_tslam >

<lv311254_sa1ZZT_tsscr > = ghczmprim:GHCziPrim.offloadzh

<lv236850_main:Main.nzhs36W , lv311253_v8908 , lv311230_ipv2a2NE >

13 September 28, 2016

Sample: MIL IR

a2NL_tslam_code =

Code ^*(CcCode; lv344572_ia2NL_tslam , lv311232_ia2NL){PIw} : (SInt32)

{

Entry L12630

L12630 ()[]

lv344570_ipv1a222 = lv344572_ia2NL_tslam [sf:1];

lv344571_main:Main.fa1ZZM_ubx = lv344572_ia2NL_tslam [sf:2];

Call(ev340941_ihrNoDuplicate) ?{} () → () L5152 {I}

L5152()[L12630]

lv344549_main:Main.rbs366 = lv344571_main:Main.fa1ZZM_ubx [sf:1];

lv344551_main:Main.arrzhs36y = lv344571_main:Main.fa1ZZM_ubx [sf:2];

lv333435_v8860 = SInt32Plus(lv344549_main:Main.rbs366 , lv311232_ia2NL);

lv333436_v8861 = lv344551_main:Main.arrzhs36y [sv:lv333435_v8860];

lv352231_a7s356 = SInt32Times(lv333436_v8861 , lv333436_v8861);

lv333439_v8865 = SInt32Times(lv352231_a7s356 , S32 (16));

!lv344570_ipv1a222 [sv:lv311232_ia2NL] ← lv333439_v8865;

Return(S32 (0))

}

{

....

L10195 ()[L5150]

lv311252_ia2NL_tslam = <<L; b32+, r+, r+>; gv344568_ia2NL_tslam_code ,

lv344566_ , lv255299_xa1dW_tslam >;

lv311253_v8908 = ThunkMkVal(lv311252_ia2NL_tslam);

Call(ev344585_pLsrPrimGHCOffloadzh) ?{} (S32 (50), lv311253_v8908) → ()

L5158 {Agrw}

....

}

14 September 28, 2016

Sample: kernel code in C
static sint32 v344568_ia2NL_tslam_code(PlsrObjectB v344572_ia2NL_tslam ,

sint32 v311232_ia2NL)

{

sint32 v333435_v8860;

sint32 v333436_v8861;

sint32 v333439_v8865;

sint32 v344549_mainZCMainzirbs366;

PlsrPAny v344551_mainZCMainziarrzzhs36y;

PlsrPAny v344570_ipv1a222;

PlsrPAny v344571_mainZCMainzifa1ZZZZM_ubx;

sint32 v352231_a7s356;

v344570_ipv1a222 = pLsrObjectField (v344572_ia2NL_tslam , 8, PlsrPAny (*));

v344571_mainZCMainzifa1ZZZZM_ubx =

pLsrObjectField (v344572_ia2NL_tslam , 12, PlsrPAny (*));

ihrNoDuplicate ();

v344549_mainZCMainzirbs366 =

pLsrObjectField (v344571_mainZCMainzifa1ZZZZM_ubx , 8, sint32 (*));

v344551_mainZCMainziarrzzhs36y =

pLsrObjectField (v344571_mainZCMainzifa1ZZZZM_ubx , 12, PlsrPAny (*));

pLsrPrimPSInt32Plus(v333435_v8860 , v344549_mainZCMainzirbs366 , v311232_ia2NL);

v333436_v8861 = pLsrObjectExtra (v344551_mainZCMainziarrzzhs36y , 8,

sint32 (*), 4, v333435_v8860);

pLsrPrimPSInt32Times (v352231_a7s356 , v333436_v8861 , v333436_v8861);

pLsrPrimPSInt32Times (v333439_v8865 , v352231_a7s356 , 16);

pLsrObjectExtra (v344570_ipv1a222 , 8, sint32 (*), 4, v311232_ia2NL) =

v333439_v8865;

return 0;

}

static void v344568_ia2NL_tslam_code_kernel(void (*env), size_t i, void (*p))

{

v344568_ia2NL_tslam_code ((PlsrObjectB)env , (sint32)i);

}

void v344568_ia2NL_tslam_code_offload(sint32 size , PlsrObjectB env)

{

offload ((size_t)size , (void (*))env , v344568_ia2NL_tslam_code_kernel , 0);

}

15 September 28, 2016

What we have also learned

Many optimizations for CPUs also help GPUs.

16 September 28, 2016

Branch divergence hurts GPU performance

17 September 28, 2016

Branching problem with GHC

Cause:
GHC tends to inline aggressively into leaves,

. . . which creates branches that has many lines of code,

. . . but mostly identical (modulo renaming).

Consequence:
No significant cost when executing sequntially on CPU,

. . . but bad for both:

• SIMD vectorization on CPU, and

• SIMT execution on GPU.

Solution:
Branch to CMOV conversion that helps both CPU and GPU.

18 September 28, 2016

Branching problem with GHC

Cause:
GHC tends to inline aggressively into leaves,
. . . which creates branches that has many lines of code,

. . . but mostly identical (modulo renaming).

Consequence:
No significant cost when executing sequntially on CPU,

. . . but bad for both:

• SIMD vectorization on CPU, and

• SIMT execution on GPU.

Solution:
Branch to CMOV conversion that helps both CPU and GPU.

18 September 28, 2016

Branching problem with GHC

Cause:
GHC tends to inline aggressively into leaves,
. . . which creates branches that has many lines of code,
. . . but mostly identical (modulo renaming).

Consequence:
No significant cost when executing sequntially on CPU,

. . . but bad for both:

• SIMD vectorization on CPU, and

• SIMT execution on GPU.

Solution:
Branch to CMOV conversion that helps both CPU and GPU.

18 September 28, 2016

Branching problem with GHC

Cause:
GHC tends to inline aggressively into leaves,
. . . which creates branches that has many lines of code,
. . . but mostly identical (modulo renaming).

Consequence:
No significant cost when executing sequntially on CPU,

. . . but bad for both:

• SIMD vectorization on CPU, and

• SIMT execution on GPU.

Solution:
Branch to CMOV conversion that helps both CPU and GPU.

18 September 28, 2016

Branching problem with GHC

Cause:
GHC tends to inline aggressively into leaves,
. . . which creates branches that has many lines of code,
. . . but mostly identical (modulo renaming).

Consequence:
No significant cost when executing sequntially on CPU,

. . . but bad for both:

• SIMD vectorization on CPU, and

• SIMT execution on GPU.

Solution:
Branch to CMOV conversion that helps both CPU and GPU.

18 September 28, 2016

Branching problem with GHC

Cause:
GHC tends to inline aggressively into leaves,
. . . which creates branches that has many lines of code,
. . . but mostly identical (modulo renaming).

Consequence:
No significant cost when executing sequntially on CPU,

. . . but bad for both:

• SIMD vectorization on CPU, and

• SIMT execution on GPU.

Solution:
Branch to CMOV conversion that helps both CPU and GPU.

18 September 28, 2016

But not all is rosy . . .

Sometimes we must optimize differently!

19 September 28, 2016

Example: 2D Convolution

Operation ? on 2D image is defined by:

(A ? K)(x, y) =
∑

i

∑
j A(x + i, y + j)K(i, j)

A is the image being processed.
K is the stencil kernel, 3×3, 1×5, etc.

20 September 28, 2016

How Repa handles blocking

B. Lippmeier and G. Keller (Haskell’11)

• group block-reads of adjacent input pixels
• Global Value Numbering (GVN)

Good sequential speed-up for CPU.

For SIMD? Block vertically instead.

For GPU? HUGE slowdown!

21 September 28, 2016

How Repa handles blocking

B. Lippmeier and G. Keller (Haskell’11)

• group block-reads of adjacent input pixels
• Global Value Numbering (GVN)

Good sequential speed-up for CPU.

For SIMD?

Block vertically instead.

For GPU? HUGE slowdown!

21 September 28, 2016

How Repa handles blocking

B. Lippmeier and G. Keller (Haskell’11)

• group block-reads of adjacent input pixels
• Global Value Numbering (GVN)

Good sequential speed-up for CPU.

For SIMD? Block vertically instead.

For GPU? HUGE slowdown!

21 September 28, 2016

How Repa handles blocking

B. Lippmeier and G. Keller (Haskell’11)

• group block-reads of adjacent input pixels
• Global Value Numbering (GVN)

Good sequential speed-up for CPU.

For SIMD? Block vertically instead.

For GPU?

HUGE slowdown!

21 September 28, 2016

How Repa handles blocking

B. Lippmeier and G. Keller (Haskell’11)

• group block-reads of adjacent input pixels
• Global Value Numbering (GVN)

Good sequential speed-up for CPU.

For SIMD? Block vertically instead.

For GPU? HUGE slowdown!

21 September 28, 2016

Conclusion and Take Away

• The advance in hardware and OpenCL standard (e.g., SVM)
gives new opportunities to explore alternatives.

• Native offload is a promising approach towards GPGPU.

• Optimizing for GPUs is challenging and fun.

22 September 28, 2016

Backup Slides

23 September 28, 2016

Haskell Repa Benchmark Programs

Name Parameter iteration Description

1d-convolution 3M pixels 10 1D convolution with 8192-point stencil
2d-convolution 3200×4000 pixels 100 2D convolution with a 5x5 stencil
7pt-stencil 256×256×160 pixels 100 3D convolution with 7-point stencil
backprojection 256×256×256 pixels 100 2D to 3D image projection
blackscholes 10M options 100 Black Scholes algorithm for put and call options
matrix-mult 2K×2K matrix 1 Matrix multiplication
nbody 200K bodies 1 Nbody simulation
treesearch 16-level tree, 20M inputs 50 Binary tree search
volume-rendering 1M input rays 1000 Volumetric rendering

24 September 28, 2016

Benchmarking result: GPU vs CPU (2/9)

Kernel speedups relative to non-vectorized single-thread Core i7.
(bigger is better)

25 September 28, 2016

Benchmarking result: GPU vs CPU (7/9)

Kernel speedups relative to non-vectorized single-thread Core i7.
(bigger is better)

26 September 28, 2016

Haskell vs OpenCL Performance (2D Convolution)

Benchmark Description

haskell-1 Haskell program with a kernel that computes only one output pixel

haskell-row Haskell program with a kernel that computes an entire output row

ocl-naive native OpenCL that reads 5x5 stencil from an array

ocl-const Similar to ocl-naive, specifies constant memory for stencil array

ocl-unrolled Similar to naive-const, with stencil loop unrolled

ocl-specialized Similar to ocl-unrolled, with stencil values specialized

ocl-localmem Similar to ocl-specialized, uses a 20x20 local memory for blocking

ocl-linear OpenCL ported from the generated kernel of haskell-1

OpenCL and Haskell benchmarks for 2D convolution

27 September 28, 2016

Haskell vs OpenCL (2D Convolution)

2D convolution kernel speedups relative to Core i7 (bigger is better)

• ocl-localmem is slower than ocl-specialized.

• ocl-linear is a direct port of haskell-1, yet more than 2X faster.

• haskell-row is optimized for CPU, but got worse on GPU.

28 September 28, 2016

