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General purpose computing on integrated GPUs

More than 90% of processors shipping today include a GPU on die.

Lower energy use is a key design goal.

The CPU and GPU share physical memory (DRAM), may share
Last Level Cache (LLC).

(a) Intel Haswell (b) AMD Kaveri
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GPU differences from CPU

CPUs optimized for latency, GPUs for throughput.

• CPUs: deep caches, OOO cores, sophisticated branch predictors

• GPUs: transistors spent on many slim cores running in parallel

Single Instruction Multiple Thread (SIMT) execution.

• Work-items (logical threads) are partitioned into work-groups

• The work-items of a work-group execute together in near lock-step

• Allows several ALUs to share one instruction unit

Shallow execution pipelines, highly multi-threaded, shared
high-speed local memory, serial execution of branch codes, . . .
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Programming GPUs with DSLs

Pros:
High-level constructs and operators.
Domain-specific optimizations.

Cons:
Barriers between a DSL and its
host language.
Re-implementation of general
program optimizations.
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Alternative approach: native offload

Directly compile a sub-set of host language to target GPUs.

• less explored, especially for functional languages.

• enjoy all optimizations available to the host language.

• target devices with shared virtual memory (SVM).

This talk: native offload of Haskell Repa programs.
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The Haskell Repa library

A popular data parallel array programming library.

import Data.Array.Repa as R

a :: Array U DIM2 Int
a = R.fromListUnboxed (Z :. 5 :. 10) [0..49]

b :: Array D DIM2 Int
b = R.map (^2) (R.map (*4) a)

c :: IO (Array U DIM2 Int)
c = R.computeP b

Maybe we can run the same program on GPUs too!
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Introducing computeG

computeS :: (Shape sh, Unbox e)⇒
Array D sh e → Array U sh e

computeP :: (Shape sh, Unbox e, Monad m)⇒
Array D sh e → m (Array U sh e)

computeG :: (Shape sh, Unbox e, Monad m)⇒
Array D sh e → m (Array U sh e)

In theory, all Repa programs should also run on GPUs.

In practice, only a restricted subset is allowed to compile and run.
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Implementing computeG

We introduce a primitive operator offload#:

offload# :: Int → (Int → State# s → State# s)
→ State# s → State# s

that takes three parameters:

1. the upper bound of a range.

2. a kernel function that maps an index in the range to a stateful
computation.

3. a state.

offload# is enough to implement computeG.
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Implementation overview

HRC Intel Labs Haskell Research Compiler that uses GHC
as frontend (Haskell’13).

Concord C++ based heterogeneous computing framework
that compiles to OpenCL (CGO’14).

1. Modify Repa to implement computeG in terms of offload#.

2. Modify GHC to introduce the offload# primitive and its type.

3. Modify HRC to intercept calls to offload#.

4. In HRC’s outputter, dump the kernel function to a C file.

5. Use Concord to compile C kernel to OpenCL.

6. Replace offload# with call into Concord runtime.
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What is the catch?

Not all Repa functions can be offloaded.

The following restrictions are enforced at compile time:

• kernel function must be statically known.

• no allocation/thunk evals/recursion/exception in the kernel.

• only function calls into Concord or OpenCL are allowed.

Additionally:

• All memory are allocated in the SVM region.

• No garbage collection during offload call.
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Benchmarking

A Variety of 9 embarrassingly parallel programs written using Repa.
A majority come from the “Haskell Gap” study (IFL’13).

Hardware:

Processor Cores Clock Hyper-thread Peak Perf.

HD4600 (GPU) 20 1.3GHz No 432 GFLOPs

Core i7-4770 4 3.4GHz Yes 435 GFLOPs

Xeon E5-4650 32 2.7GHz No 2970 GFLOPs

Average relative speed-up (bigger is better):

HD4600 (GPU) Core i7-4770 Xeon E5-4650

Geometric Mean 6.9 7.0 18.8
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What we have learned

Laziness is not a problem most of the time for Repa programs.
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Sample: ANormStrict IR
lv311252_ia2NL_tslam ^* = \ <; lv311232_ia2NL > →

let

<lv311233_s1a2NM_tsscr > = ghczmprim:GHCziPrim.noDuplicatezh

<lv5772_main:Main.ghczmprim:GHCziPrim.RealWorld0 >

lv311245_v8896^ = thunk <; >

let

<lv311234_v8896_tsscr > = ghczmprim:GHCziPrim.remIntzh

<lv311232_ia2NL , lv236843_main:Main.y1s36S >

<lv311235_v8896_tsscr > = ghczmprim:GHCziPrim.quotIntzh

<lv311232_ia2NL , lv236843_main:Main.y1s36S >

<lv311236_atmp > = n22_ghczmprim:GHCziTypes.Izh <lv311235_v8896_tsscr >

lv311237_v8893^ = thunk <; > <lv311236_atmp >

<lv322918_atmp > = n15_repazm3zi2zi2zi2:DataziArrayziRepaziIndex.ZCzi

<lv5929_main:Main.repazm3zi2zi2zi2:DataziArrayziRepaziIndex.ZZ111 ,

lv311237_v8893 >

lv311240_v8894^ = thunk <; > <lv322918_atmp >

<lv311241_atmp > = n22_ghczmprim:GHCziTypes.Izh <lv311234_v8896_tsscr >

lv311242_v8895^ = thunk <; > <lv311241_atmp >

<lv322921_atmp > = n15_repazm3zi2zi2zi2:DataziArrayziRepaziIndex.ZCzi

<lv311240_v8894 , lv311242_v8895 >

in <lv322921_atmp >

<lv311247_v8904_tsscr > = lv332264_main:Main.fa1ZZM_ubx <lv311245_v8896 >

<lv311250_v8904 > =

case lv311247_v8904_tsscr of

{n22_ghczmprim:GHCziTypes.Izh lv311248_xzha30Q →
let <lv311249_atmp > = ghczmprim:GHCziPrim.initUnboxedIntArrayzh

<lv311225_ipv1a222 , lv311232_ia2NL , lv311248_xzha30Q ,

lv311233_s1a2NM_tsscr >

in <lv311249_atmp >}

<lv311251_atmp > = (0 :: primtype #int)

in <lv311251_atmp >

lv311253_v8908^ = thunk <; > <lv311252_ia2NL_tslam >

<lv311254_sa1ZZT_tsscr > = ghczmprim:GHCziPrim.offloadzh

<lv236850_main:Main.nzhs36W , lv311253_v8908 , lv311230_ipv2a2NE >
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Sample: MIL IR

a2NL_tslam_code =

Code ^*( CcCode; lv344572_ia2NL_tslam , lv311232_ia2NL){PIw} : (SInt32)

{

Entry L12630

L12630 ()[]

lv344570_ipv1a222 = lv344572_ia2NL_tslam [sf:1];

lv344571_main:Main.fa1ZZM_ubx = lv344572_ia2NL_tslam [sf:2];

Call(ev340941_ihrNoDuplicate) ?{} () → () L5152 {I}

L5152()[L12630]

lv344549_main:Main.rbs366 = lv344571_main:Main.fa1ZZM_ubx [sf:1];

lv344551_main:Main.arrzhs36y = lv344571_main:Main.fa1ZZM_ubx [sf:2];

lv333435_v8860 = SInt32Plus(lv344549_main:Main.rbs366 , lv311232_ia2NL);

lv333436_v8861 = lv344551_main:Main.arrzhs36y [sv:lv333435_v8860 ];

lv352231_a7s356 = SInt32Times(lv333436_v8861 , lv333436_v8861);

lv333439_v8865 = SInt32Times(lv352231_a7s356 , S32 (16));

!lv344570_ipv1a222 [sv:lv311232_ia2NL] ← lv333439_v8865;

Return(S32 (0))

}

{

....

L10195 ()[L5150]

lv311252_ia2NL_tslam = <<L; b32+, r+, r+>; gv344568_ia2NL_tslam_code ,

lv344566_ , lv255299_xa1dW_tslam >;

lv311253_v8908 = ThunkMkVal(lv311252_ia2NL_tslam);

Call(ev344585_pLsrPrimGHCOffloadzh) ?{} (S32 (50), lv311253_v8908) → ()

L5158 {Agrw}

....

}
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Sample: kernel code in C
static sint32 v344568_ia2NL_tslam_code(PlsrObjectB v344572_ia2NL_tslam ,

sint32 v311232_ia2NL)

{

sint32 v333435_v8860;

sint32 v333436_v8861;

sint32 v333439_v8865;

sint32 v344549_mainZCMainzirbs366;

PlsrPAny v344551_mainZCMainziarrzzhs36y;

PlsrPAny v344570_ipv1a222;

PlsrPAny v344571_mainZCMainzifa1ZZZZM_ubx;

sint32 v352231_a7s356;

v344570_ipv1a222 = pLsrObjectField (v344572_ia2NL_tslam , 8, PlsrPAny (*));

v344571_mainZCMainzifa1ZZZZM_ubx =

pLsrObjectField (v344572_ia2NL_tslam , 12, PlsrPAny (*));

ihrNoDuplicate ();

v344549_mainZCMainzirbs366 =

pLsrObjectField (v344571_mainZCMainzifa1ZZZZM_ubx , 8, sint32 (*));

v344551_mainZCMainziarrzzhs36y =

pLsrObjectField (v344571_mainZCMainzifa1ZZZZM_ubx , 12, PlsrPAny (*));

pLsrPrimPSInt32Plus(v333435_v8860 , v344549_mainZCMainzirbs366 , v311232_ia2NL);

v333436_v8861 = pLsrObjectExtra (v344551_mainZCMainziarrzzhs36y , 8,

sint32 (*), 4, v333435_v8860);

pLsrPrimPSInt32Times (v352231_a7s356 , v333436_v8861 , v333436_v8861);

pLsrPrimPSInt32Times (v333439_v8865 , v352231_a7s356 , 16);

pLsrObjectExtra (v344570_ipv1a222 , 8, sint32 (*), 4, v311232_ia2NL) =

v333439_v8865;

return 0;

}

static void v344568_ia2NL_tslam_code_kernel(void (*env), size_t i, void (*p))

{

v344568_ia2NL_tslam_code (( PlsrObjectB)env , (sint32)i);

}

void v344568_ia2NL_tslam_code_offload(sint32 size , PlsrObjectB env)

{

offload (( size_t)size , (void (*))env , v344568_ia2NL_tslam_code_kernel , 0);

}
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What we have also learned

Many optimizations for CPUs also help GPUs.
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Branch divergence hurts GPU performance
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Branching problem with GHC

Cause:
GHC tends to inline aggressively into leaves,

. . . which creates branches that has many lines of code,

. . . but mostly identical (modulo renaming).

Consequence:
No significant cost when executing sequntially on CPU,

. . . but bad for both:

• SIMD vectorization on CPU, and

• SIMT execution on GPU.

Solution:
Branch to CMOV conversion that helps both CPU and GPU.
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But not all is rosy . . .

Sometimes we must optimize differently!
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Example: 2D Convolution

Operation ? on 2D image is defined by:

(A ? K)(x, y) =
∑

i

∑
j A(x + i, y + j)K(i, j)

A is the image being processed.
K is the stencil kernel, 3×3, 1×5, etc.
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How Repa handles blocking

B. Lippmeier and G. Keller (Haskell’11)

• group block-reads of adjacent input pixels
• Global Value Numbering (GVN)

Good sequential speed-up for CPU.

For SIMD? Block vertically instead.

For GPU? HUGE slowdown!
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Conclusion and Take Away

• The advance in hardware and OpenCL standard (e.g., SVM)
gives new opportunities to explore alternatives.

• Native offload is a promising approach towards GPGPU.

• Optimizing for GPUs is challenging and fun.
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Backup Slides
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Haskell Repa Benchmark Programs

Name Parameter iteration Description

1d-convolution 3M pixels 10 1D convolution with 8192-point stencil
2d-convolution 3200×4000 pixels 100 2D convolution with a 5x5 stencil
7pt-stencil 256×256×160 pixels 100 3D convolution with 7-point stencil
backprojection 256×256×256 pixels 100 2D to 3D image projection
blackscholes 10M options 100 Black Scholes algorithm for put and call options
matrix-mult 2K×2K matrix 1 Matrix multiplication
nbody 200K bodies 1 Nbody simulation
treesearch 16-level tree, 20M inputs 50 Binary tree search
volume-rendering 1M input rays 1000 Volumetric rendering
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Benchmarking result: GPU vs CPU (2/9)

Kernel speedups relative to non-vectorized single-thread Core i7.
(bigger is better)
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Benchmarking result: GPU vs CPU (7/9)

Kernel speedups relative to non-vectorized single-thread Core i7.
(bigger is better)
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Haskell vs OpenCL Performance (2D Convolution)

Benchmark Description

haskell-1 Haskell program with a kernel that computes only one output pixel

haskell-row Haskell program with a kernel that computes an entire output row

ocl-naive native OpenCL that reads 5x5 stencil from an array

ocl-const Similar to ocl-naive, specifies constant memory for stencil array

ocl-unrolled Similar to naive-const, with stencil loop unrolled

ocl-specialized Similar to ocl-unrolled, with stencil values specialized

ocl-localmem Similar to ocl-specialized, uses a 20x20 local memory for blocking

ocl-linear OpenCL ported from the generated kernel of haskell-1

OpenCL and Haskell benchmarks for 2D convolution
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Haskell vs OpenCL (2D Convolution)

2D convolution kernel speedups relative to Core i7 (bigger is better)

• ocl-localmem is slower than ocl-specialized.

• ocl-linear is a direct port of haskell-1, yet more than 2X faster.

• haskell-row is optimized for CPU, but got worse on GPU.
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