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Abstract
Causal commutative arrows (CCA) extend arrows with additional
constructs and laws that make them suitable for modelling domains
such as functional reactive programming, differential equations and
synchronous dataflow. Earlier work has revealed that a syntactic
transformation of CCA computations into normal form can result in
significant performance improvements, sometimes increasing the
speed of programs by orders of magnitude. In this work we refor-
mulate the normalization as a type class instance and derive op-
timized observation functions via a specialization to stream trans-
formers to demonstrate that the same dramatic improvements can
be achieved without leaving the language.

Categories and Subject Descriptors D.1.1 [Programming tech-
niques]: Applicative (Functional) Programming

Keywords arrows, stream transformers, optimization, equational
reasoning, type classes

1. Introduction
Arrows (Hughes 2000) provide a high-level interface to computa-
tion, allowing programs to be expressed abstractly rather than con-
cretely, using reusable combinators in place of special-purpose con-
trol flow code. Here is a program written using arrows:

exp = proc ()→ do
rec let e = 1 + i

i ← integral−≺ e
returnA−≺ e

which corresponds to the following recursive definition of the
exponential function

e(t) = 1 +

∫ t

0

e(t)dt

Paterson’s arrow notation (Paterson 2001), used in the definition of
exp, makes the data flow pleasingly clear: the integral function
forms the shaft of an arrow that turns e at the nock into i at
the head. The name e appears twice more, once above the arrow
as the successor of i , and once below as the result of the whole
computation. (The definition of integral itself appears later in this
paper, on page 4.) The notation need not be taken as primitive; there
is a desugaring into a set of combinators arr , ≫, first , loop, and
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init which construct terms of an overloaded type arr . Most of the
code listings in this paper uses these combinators, which are more
convenient for defining instances, in place of the notation; we refer
the reader to Paterson (2001) for the details of the desugaring.

Unfortunately, speed does not always follow succinctness. Al-
though arrows in poetry are a byword for swiftness, arrows in pro-
grams can introduce significant overhead. Continuing with the ex-
ample above, in order to run exp, we must instantiate the abstract
arrow with a concrete implementation, such as the causal stream
transformer SF (Liu et al. 2009) that forms the basis of signal func-
tions in the Yampa domain-specific language for functional reactive
programming (Hudak et al. 2003):

newtype SF a b = SF {unSF :: a → (b,SF a b)}

(The accompanying instances for SF , which define the arrow
operators, appear on page 6.)

Instantiating exp with SF brings an unpleasant surprise: the
program runs orders of magnitude slower than an equivalent pro-
gram that does not use arrows. The programmer is faced with the
familiar need to choose between a high level of abstraction and
acceptable performance. Liu et al. (2009) describe the problem in
more detail, and also propose a remedy: the laws which arrow im-
plementations must obey can be used to rewrite arrow computations
into a normal form which eliminates the overhead of the arrow ab-
straction. Their design is formalized as a more restricted form of ar-
rows, called causal commutative arrows (CCA), and implemented
as a Template Haskell library, which transforms the syntax of pro-
grams during compilation to rewrite CCA computations into nor-
mal form.

The solution described by Liu et al. achieves significant perfor-
mance improvements, but the use of Template Haskell introduces
a number of drawbacks. Perhaps most significantly, the Template
Haskell implementation of normalization is untyped: there is no
check that the types of the unnormalized and normalized terms are
the same. Although the normalizer code operates on untyped syn-
tax, its output is passed to the type checker, so there is no danger of
actually running ill-typed code. Nevertheless, the fact that the nor-
malizer is not guaranteed to preserve typing means that errors may
be discovered significantly later. A further drawback is that the nor-
malizer can only operate on computations whose structure is fully
known during compilation, when Template Haskell operates.

In this paper we address the first of these drawbacks and suggest
a path to addressing the second. The reader familiar with recent
Template Haskell developments might at this point expect us to
propose switching the existing normalizer to using typed quotations
and splices. Instead, we present a simpler approach, eschewing
syntactic transformations altogether and defining normalization as
an operation on values, implemented as a type class instance.

1.1 Contributions
Section 2 reviews Causal Commutative Arrows (CCA), their defi-
nition as a set of Haskell type classes, the accompanying laws, and



class Arrow (arr :: ∗ → ∗ → ∗) where
arr :: (a → b)→ arr a b
(≫) :: arr a b → arr b c → arr a c
first :: arr a b → arr (a, c) (b, c)

class Arrow arr ⇒ ArrowLoop arr where
loop :: arr (a, c) (b, c)→ arr a b

class ArrowLoop arr ⇒ ArrowInit arr where
init :: a → arr a a

(a) arr f (b) f ≫ g

(c) first f (d) loop f

Figure 1: The Arrow , ArrowLoop and ArrowInit classes

their normal form (CCNF). The contributions of the remainder of
this paper are as follows:

• We derive a new implementation of CCA normalization, re-
alised as a set of type class instances for a data type which
represents the CCA normal form (Section 3)

• We derive an optimized version of the “observation” function
that interprets normalized CCA computations using other arrow
instances (Section 4).

• We present a second implementation of the normalizing in-
stances for CCA based on mutable state, and use it to improve
the performance of the Euterpea library (Section 5).

• We demonstrate via a series of micro- and macro-benchmarks
that the performance of our normalizing instances compares
favourably with the Template Haskell implementation used in
the original CCA work (Section 6).

Finally, Section 7 contextualizes our work in the existing literature.

2. Background
For readers that may not be familiar with arrows or CCA, we first
begin with a review of some background knowledge of arrows,
before introducing CCA and their normalization.

2.1 Arrows
Arrows (Hughes 2000) are a generalization of monads that relax
the linearity constraint, while retaining a disciplined style of com-
position. Like monads in Haskell, the type of computation captured
by arrows is expressed through a type class called Arrow , shown
in Figure 1 together with diagrams describing its three combina-
tors. The combinator arr lifts a function from type a to type b to a
“pure” arrow computation from a to b, of type arr a b where arr
is the arrow type. The combinator ≫ composes two arrow com-
putations by connecting the output of the first to the input of the
second, and represents a sequential composition. Lastly, in order to
allow “branching” and “merging” of inputs and outputs, the Arrow
class provides the first combinator, based on which all other par-
allel combinators can be defined. Intuitively, first f is analogous

to applying arrow computation f to the first of a pair of inputs to
obtain the first output, while connecting the second input directly to
the second output. The dual of first , called second , can be defined
as follows:

second :: Arrow arr ⇒ arr a b → arr (c, a) (c, b)
second f = arr swap ≫ first f ≫ arr swap

where swap (a, b) = (b, a)

Parallel composition ??? of two arrows can then be defined as a
sequence of first and second :

(???) :: Arrow arr ⇒ arr a b → arr c d → arr (a, c) (b, d)
f ??? g = first f ≫ second g

Together, these combinators form an interface to first-order com-
putations, i.e. computations which do not dynamically construct or
change their compositional structure during the course of their ex-
ecution.

Like monads, all arrows are governed by a set of algebraic laws,
which are shown in Figure 2a. (Lindley et al. (2010) further showed
that these nine arrow laws can be reduced to eight.) It is worth not-
ing that all arrow laws respect the order of sequential composition
of “impure” arrows, while a number of them (exchange, unit and
association) allow “pure” arrows to be moved around without af-
fecting the computation.

Arrows can be extended to have more operations, governed by
additional laws. Paterson (2001) defines the ArrowLoop class (Fig-
ure 1) with an operator loop, which corresponds to the rec syntax
in the arrow notation. Intuitively, the second output of the arrow in-
side loop is immediately connected back to its second input, and
thus becomes a form of recursion at value level, as opposed to
recursively defined arrows (an example of which is given in Sec-
tion 5.3). Figure 2b gives the set of laws for ArrowLoop.

2.2 Causal Commutative Arrows
Based on looping arrows, Liu et al. (2009) introduces another
extension called causal commutative arrows (CCA) with an init
combinator in the ArrowInit class (Figure 1), and two additional
laws to place further constraints on the computation (Figure 2c). In
the context of synchronous circuits, ArrowInit is almost identical
to the ArrowCircuit class first introduced by Paterson (2001),
with init being equivalent to delay that supplies its argument
as its initial output, and copies from its input to the rest of its
outputs. For the purpose of this paper, we will continue using the
name ArrowInit to make a few distinctions: the categorization of
CCA defines two additional laws for ArrowInit instances while
ArrowCircuit did not, and the fact that CCA goes beyond what is
conventionally considered as a circuit (Liu and Hudak 2010).

More specifically, the commutativity law of ArrowInit states
that the order in a parallel arrow composition (???) does not matter:
side effects are still allowed, but they cannot interfere with each
other. The product law adds the additional restriction that the effect
introduced by init is not only polymorphic in the value it carries,
but also commutes with product.

2.3 Causal Commutative Normal Form
The five operations from the Arrow , ArrowLoop, and ArrowInit
classes (Figure 1) can be used to construct a wide variety of com-
putations. However, the laws that accompany the operations (Fig-
ure 2) make many of these computations equivalent. One way to
determine whether two computations are equivalent is to put them
into a normal form. The set of laws for CCA indeed forms its ax-
iomatic semantics with which such equivalence can be formally
reasoned about. It turns out that all CCAs can be syntactically
translated into either a pure arrow, or a single loop containing one



arr id ≫ f ≡ f (left identity)
f ≫ arr id ≡ f (right identity)

(f ≫ g) ≫ h ≡ f ≫ (g ≫ h) (associativity)
arr (g . f ) ≡ arr f ≫ arr g (composition)

first (arr f ) ≡ arr (f ×id) (extension)
first (f ≫ g) ≡ first f ≫ first g (functor)

first f ≫ arr (id×g) ≡ arr (id×g) ≫ first f (exchange)
first f ≫ arr fst ≡ arr fst ≫ f (unit)

first (first f ) ≫ arr assoc ≡ arr assoc ≫ first f (association)

(a) Arrow laws

loop (first h ≫ f ) ≡ h ≫ loop f (left tightening)
loop (f ≫ first h) ≡ loop f ≫ h (right tightening)

loop (f ≫ arr (id×k)) ≡ loop (arr (id×k) ≫ f ) (sliding)
loop (loop f ) ≡ loop (arr assoc-1 . f . arr assoc) (vanishing)

second (loop f ) ≡ loop (arr assoc . second f . arr assoc-1 ) (superposing)
loop (arr f ) ≡ arr (trace f ) (extension)

(b) ArrowLoop laws

first f ≫ second g ≡ second g ≫ first f (commutativity)
init i ??? init j ≡ init (i , j ) (product)

(c) ArrowInit laws

×::(a → b)→ (c → d)→ (a, b)→ (c, d)
f ×g = λ(x , y)→ (f x , g y)
assoc :: ((a, b), c)→ (a, (b, c))
assoc ((a, b), c) = (a, (b, c))

assoc-1 :: (a, (b, c))→ ((a, b), c)

assoc-1 (a, (b, c)) = ((a, b), c)
trace :: ((a, b)→ (c, b))→ a → c
trace f a = let (c, b) = f (a, b) in c

(d) Auxiliary functions

Figure 2: Arrow , ArrowLoop and ArrowInit laws

pure arrow and one initial state value, which is called causal com-
mutative normal form (CCNF) (Liu et al. 2009, 2011):

loop (arr f ≫ second (init i))

The five CCA operations are used exactly once in CCNF, each rep-
resenting a different component or composition, leaving no room
for further reductions. We save the discussion on the normalization
details, and instead refer our readers to Liu et al. (2011) for the
actual proof. CCNF can be expressed as a Haskell function:

loopD :: ArrowInit arr ⇒ c → ((a, c)→ (b, c))→ arr a b
loopD i f = loop (arr f ≫ second (init i))

Examining the type of the initial state value i and transition func-
tion f reveals that they closely resemble a form of automata called
Mealy machines (G. H. Mealy 1955) that are often used to describe
the operational semantics of dataflow programming. Informally, a
Mealy machine maps each state s from a given set S , to a function
that produces for every input x a pair of (y , s ′), consisting of the
output y and the next state s′. In the above loopD form, the value
i becomes our initial state s0, and the uncurried form of f corre-
sponds to the transition function. In this sense, CCNF can be seen
as making the connection between the axiomatic semantics of CCA
to Mealy machines, an operational semantics for dataflow.

In fact, the data type SF for causal stream transformers we
describe in Section 1 is a form of Mealy machine, as witnessed
by the type of unSF that projects type SF a b to its definition:

unSF :: SF a b → a → (b,SF a b)

If we take SF a b as the type of a state, then unSF becomes the
transition function of a Mealy machine. A natural implication is
that SF a b is but one implementation of CCA, or in other words,
SF a b can be made an instance of the ArrowInit class, which we
discuss in Section 4.

2.4 Example: the exp Arrow
To illustrate how CCA and CCNF work in practice, we revisit the
exp arrow presented in Section 1 in more detail. Figure 3 shows
three forms of the Haskell definition for both exp and integral :
first in arrow notation, then desugared to arrow combinators, and
lastly in CCNF.

Like exp, the integral function is defined as a looping arrow
where the incoming derivative v is integrated to become both the
output and the next state value i , which has an initial value of 0.
Because exp itself contains a recursion, and it is defined in terms
of integral , there are two nested levels of loops. This fact is made
more evident in the desugared form if we substitute integral into
the exp. However, after being normalized to CCNF, the two loops
collapse into just one, represented through the use of loopD.

3. Normalization and Optimization
It is easy to see how normalizing CCA computations can improve
their efficiency. While a CCA computation such as exp may involve



exp in arrow notation

exp = proc ()→ do
rec let e = 1 + i

i ← integral−≺ e
returnA−≺ e

integral = proc v → do
rec i ← init 0−≺ i + dt ∗ v
returnA−≺ i

exp desugared

exp = loop
(second (integral ≫ arr (+1)) ≫

arr snd ≫ arr (λx → (x , x ))
integral = loop

(arr (λ(v , i)→ i + dt ∗ v) ≫
init 0 ≫ arr (λx → (x , x ))

exp normalized

exp = loopD 0 (λ(x , y)→ let i = y + 1
in (i , y + dt ∗ i))

Figure 3: From arrow notation to CCA normal form

many uses of the arrow operators, its normal form is guaranteed to
have precisely one call to loop, one call to init , and so on. If the
implementations of these operators are computationally expensive
(as is the case for the stream transformer SF , Section 4) then
reducing the number of times they are used is likely to improve
performance.

However, programming with normal forms directly is awkward.
For instance, the definition of exp in terms of integral is math-
ematically familiar, and emphasizes code re-use and modularity.
The normalization property, however, is not modular: inserting a
normalized term as a subexpression of another normalized term is
not generally guaranteed to produce a term in normal form. It is
therefore much more convenient to program with the standard set
of arrow operations and treat normalization as a separate step.

Template Haskell How might we normalize CCA programs?
Normalization is a syntactic property, and so it is natural to consider
syntactic means. Earlier work on causal commutative arrows (Liu
et al. 2009, 2011) used Template Haskell (Sheard and Jones 2002)
to rewrite CCA programs during compilation. Template Haskell’s
support for syntactic transformations makes it straightforward to
implement a reliable CCA normalizer using the arrow laws of Fig-
ure 2a, suitably oriented.

However, the drawbacks of using Template Haskell are also sig-
nificant enough to make it worthwhile investigating alternative ap-
proaches. First, in the current Template Haskell design the repre-
sentation of expressions is untyped — that is, the type of the repre-
sentation of an expression does not vary with the type of the expres-
sion. (There is work ongoing to incorporate support for typed ex-
pressions, but these come with additional restrictions which make
it difficult or impossible to express the normalization procedure.)
This lack of type checking does not introduce unsoundness in the
technical sense, since terms generated by Template Haskell are sub-
sequently type checked, but it can delay the detection of errors,
and even allow some errors in the code transformer to remain un-
detected indefinitely. Second, writing the normalization procedure
using Template Haskell involves functions that operate on the nor-
malized program rather than as part of the program, leading to a
lack of integration between the normalizing program and the nor-
malized program; besides the fact that their types are unrelated,

the two programs also cannot easily share values. Lifting values to
the representation layers has many restrictions. One trick to avoid
lifting is to inline an entire definition into the representation layer,
but doing so would destroy sharing, which leads to inefficient code
being generated.

3.1 Normalization by Construction
An alternative approach to express transformations is to take advan-
tage of the flexibility of type classes. In place of instance definitions
that perform computation we can give definitions that simply con-
struct computations in normal form. The technique involves three
ingredients:

The first ingredient is a data type that represents exactly those
terms of some type class (Monoid, Applicative, Arrow, etc.) that
are in normal form.

The second ingredient is an observation function that turns
normalized terms back into polymorphic computations that can be
used at a concrete instance.

The final ingredient is an instance for the data type that defines
the methods of the class by constructing terms in normal form.

Readers familiar with normalization by evaluation (NBE) may
notice a correspondence between these three ingredients and the
model, interpretation in the model, and reification function that
form the core of NBE.

First ingredient: a data type CCNF for normal forms The fol-
lowing data type represents the CCA normal form described in Sec-
tion 2.3:

data CCNF a b where
Arr :: (a → b)→ CCNF a b
LoopD :: c → ((a, c)→ (b, c))→ CCNF a b

That is, a normalized CCA computation is either a pure function
f , represented as Arr f , or a term of the form loop (arr f ≫
second (init i)), represented as LoopD i f .

The definition of CCNF uses GADT syntax, but it is not a true
GADT, since the type parameters do not vary in the return types
of the constructors. However, it is an existential definition: the type
variable c that represents the type of the hidden state in LoopD
does not appear in the parameters.

Second ingredient: an observation function for CCNF The se-
mantics of the CCNF data type — that is, the interpretation of a
CCNF value as an ArrowInit instance — is given by the follow-
ing function:

observe :: ArrowInit arr ⇒ CCNF a b → arr a b
observe (Arr f ) = arr f
observe (LoopD i f ) = loop (arr f ≫ second (init i))

That is, given an ArrowInit instance for some type constructor
arr , observe turns a value of type CCNF a b into an arrow
computation in arr . A pure function Arr f is interpreted by the
arr method of arr . A value LoopD i f is interpreted as a call
to loopD in arr . For clarity the definition of loopD is inlined in
observe .

Final ingredient: an ArrowInit instance for CCNF Figure 4
defines instances of Arrow , ArrowLoop and ArrowInit for
CCNF .

The definition of these instances is closely related to the CCA
laws of Figure 2. It is of course the case that each instance for
CCNF is only valid if it satisfies the laws associated with the class
(although this property is assumed rather than enforced). But the
relationship between the laws and the definitions is closer here,
since the instance definitions may be derived directly from the laws.

Before embarking on the derivation we must first establish an
appropriate interpretation of the equality symbol in the equations of



instance Arrow CCNF where
arr = Arr

Arr f ≫ Arr g = Arr (g . f )
Arr f ≫ LoopD i g = LoopD i (g . f ×id)
LoopD i f ≫ Arr g = LoopD i (g×id . f )
LoopD i f ≫ LoopD j g =

LoopD (i , j ) (assoc′ (juggle ′ (g×id) . f ×id))

first (Arr f ) = Arr (f ×id)
first (LoopD i f ) = LoopD i (juggle ′ (first f ))

instance ArrowLoop CCNF where
loop (Arr f ) = Arr (trace f )
loop (LoopD i f ) = LoopD i (trace (juggle ′ f ))

instance ArrowInit CCNF where
init i = LoopD i swap

Figure 4: The arrow instances for CCNF

Figure 2. There are two sets of instances involved in the derivation
namely, the CCNF instances that we wish to derive, and the arrow
instances which we will use to interpret the normal forms using
observe . The derivation of the first set of instances depends on the
laws for the second set, and so the appropriate notion of equality
is a semantic one, namely equality under observation, where f
and g are considered equivalent if observe f is equivalent to
observe g . In other words, we can replace Arr and LoopD with
the corresponding right hand sides (from the definition of observe)
in the instance definitions, and then use the arrow laws (Figure 2)
to relate the right hand and left hand sides of the methods in the
definitions in Figure 4.

Figure 5 shows parts of the derivations for the Arrow , ArrowLoop
and ArrowInit methods for CCNF . The full derivations follow a
similar pattern of equational reasoning about the observed normal-
ized terms.

The top part of Figure 5 derives part of the definition of ≫ for
CCNF (Figure 4), namely the second case:

Arr f ≫ LoopD i g = LoopD i (g . f ×id)

As described above, the derivation is based on the behaviour of
normal forms under observation, and so we begin by replacing Arr
with arr and LoopD with loopD . The remainder of the derivation
is a straightforward application of the left tightening, extension and
composition laws (Figure 2).

The middle part of Figure 5 derives part of the definition of loop
for CCNF , namely the first case:

loop (Arr f ) = Arr (trace f )

This time the derivation is even simpler; under observation the left
and right sides of the definition become exactly the left and right
sides of the extension law of Figure 2.

Finally, the bottom part of Figure 5 shows the derivation of the
definition of init for CCNF :

init i = LoopD i swap

This last derivation is a little longer, due mostly to the administra-
tive shuffling involved in converting second to first and eliminat-
ing the resulting arr swap terms.

Normalization summary We have seen the derivation of the nor-
malizing instances. Before moving on to consider further optimiza-
tions, let us briefly review their use in programming with arrows.

Derivation of Arr f ≫ LoopD i g = LoopD i (g . f ×id):
arr f ≫ loopD i g

= (def. loopD)
arr f ≫ loop (arr g ≫ second (init i))

= (left tightening)
loop (first (arr f ) ≫ arr g ≫ second (init i))

= (extension)
loop (arr (f ×id) ≫ arr g ≫ second (init i))

= (composition)
loop (arr (g . f ×id) ≫ second (init i))

= (def. loopD)
loopD i (g . f ×id)

Derivation of loop (Arr f ) = Arr (trace f ):
loop (arr f )

= (extension)
arr (trace f )

Derivation of init i = LoopD i swap:
init i

= (right identity)
init i ≫ arr id

= (trace swap = id )
init i ≫ arr (trace swap)

= (extension)
init i ≫ loop (arr swap)

= (left tightening)
loop (first (init i) ≫ arr swap)

= (left identity)
loop (arr id ≫ first (init i) ≫ arr swap)

= (swap . swap = id )
loop (arr (swap . swap) ≫ first (init i) ≫

arr swap)
= (composition)

loop (arr swap ≫ arr swap ≫ first (init i) ≫
arr swap)

= (def. second )
loop (arr swap ≫ second (init i))

= (def. loopD)
loopD i swap

Figure 5: Partial derivations of ≫, loop and init for CCNF

In order to normalize a computation such as exp that is poly-
morphic in the ArrowInit instance, nothing in the definition of the
computation needs to change; the author of exp can entirely ignore
the issue of normalization.

In order to call (i.e. run) exp, the caller must instantiate the
ArrowInit constraint. Instantiatiation is typically implicit, since
the type of the context in which exp is used is sufficient to select
the appropriate instance. However, in order to normalize exp before
running it the caller must instantiate the constraint twice, first with
CCNF (by calling observe) to obtain a normalized version of exp,
and then with another ArrowInit instance, such as SF .

The original program (such as exp) might use the arrow opera-
tions many times. However, the definitions of CCNF and observe
guarantee that the SF definitions of init , loop and second , arr
and ≫ will be applied at most once each. Interposing the CCNF
instance in this way makes it possible to reduce the number of uses
of the arrow operations when running any ArrowInit computation.

4. Optimizing Observation
Section 3 showed how to improve the performance of CCA pro-
grams by taking advantage of a universal property: every CCA



instance Arrow SF where
arr f = g where g = SF (λx → (f x , g))

f ≫ g = SF (h f g)
where h f g x =

let (y , f ′) = unSF f x
(z , g ′) = unSF g y

in (z ,SF (h f ′ g ′))

first f = SF (g f )
where g f (x , z ) = let (y , f ′) = unSF f x

in ((y , z ),SF (g f ′))

instance ArrowLoop SF where
loop sf = SF (g sf )

where g f x = (y ,SF (g f ′))
where ((y , z ), f ′) = unSF f (x , z )

instance ArrowInit SF where
init i = SF (f i) where f i x = (i ,SF (f x ))

Figure 6: The arrow instances for SF

computation can be normalized into a form where each of the five
operations occurs exactly once. In this section we move from the
general to the specific, and show that much more significant im-
provements are available if we take advantage of what we know
about the context in which a normalized term is used. (The actual
improvements resulting from normalization and the changes in this
section are quantified in Section 6.)

More specifically, we will derive an optimized version of the
polymorphic observe function from Section 3 that uses three op-
portunities for specialization:

First, we instantiate the ArrowInit constraint in observe to a
particular arrow instance (namely SF ), replacing the calls to the
polymorphic arrow operators with calls to the SF implementations
of those operators. This instantiation gives us an observation func-
tion which is specialized for the SF arrow.

Second, we make use of the normal form to merge the SF
arrow combinators together. Since the observed computation is
always in normal form we know, for example, that there is always
exactly one use of loop, which is always applied to a term of
the same shape. We use this knowledge to derive more efficient
versions of the SF arrow operations that are specialized to their
arguments.

Finally, we fuse together observe with the context in which it
is used. More specifically, noting that observe is typically used
in conjunction with an interpretation of SF as stream transform-
ers, we fuse together the optimized observation function with the
observation function for streams, which turns an SF value into a
transformer on streams. We then go further still, and build an ob-
servation function that is optimized for accessing individual stream
elements. In effect, we build a function of the following type

(ArrowInit arr ⇒ arr a b)→ Int → [a ]→ b

that normalizes a CCA computation, and observes particular ele-
ments that result from instantiating it as a stream transformer.

The SF Arrow instances Figure 6 defines the Arrow , ArrowLoop
and ArrowInit instances for the SF type introduced in Section 1.

The SF transformer can be seen as a simplified definition for
signal functions; since these are described in considerable detail in
the literature (Hudak et al. 2003; Nilsson 2005; Liu et al. 2009). we
summarize their behaviour only briefly here.

An SF transformer is a function which, when applied to a value,
returns a pair of a new value and a new transformer to be used as the
continuation. The arr operator (Figure 6) constructs a pure trans-
former, where the new transformer returned as the continuation is
just itself. The ≫ operator composes two transformers f and g
by threading the argument x first through f and then through g ,
and composing the continuations. The first operator builds a new
transformer from an existing transformer f , and threads through an
unmodified input z alongside the computation of passing input x
to f . The loop operator (Figure 6) connects the second output of its
argument arrow sf as the second input to the same arrow, forming a
value-level loop for sf , as well as all its continuations. The init op-
erator (Figure 6) outputs the initial value, while passing the current
input to its own continuation as the next value to output, essentially
forming an internal state living in a closure.

One point of note is that all these functions — even arr —
are fundamentally recursive, which makes computations built by
composing them challenging for a compiler to optimize.

From unoptimized to optimized observation Although optimiz-
ing the observation function is difficult for the compiler, we can
achieve significant performance improvements by reasoning about
it ourselves. To illustrate the path from the unoptimized observation
function for CCNF to an optimized version (Figure 7), we follow
the threefold derivation outlined above.

The first step is to instantiate the ArrowInit-constrained vari-
able arr in the type of observe with SF . It is sufficient to give
observe a more specific type, but for clarity we also explicitly suf-
fix the class methods — loopSF for loop, arrSF for arr , and so
on. At this stage we also perform some minor additional simplifi-
cations, expanding the call to second into the primitive computa-
tions first , arr and ≫, and combining the resulting adjacent calls
to arr using the composition law (Figure 7(b)).

From this point onwards we will confine our attention to the
case for LoopD in the definition of observeSF , since the case for
Arr is too simple to expect significant performance improvements.

Next, we name the subexpressions in the definition of observe
using a where clause, ensuring that functions remain fully applied
in each case (Figure 7(c)).

Naming subexpressions makes it easier to specialize applica-
tions to known arguments in the next step (Figure 7(d)), and ad-
ditionally eases the subsequent rewriting of recursive definitions.
Here is an example, starting from the following definition, which
appears in the definition of observeSF after subexpressions are
named:

first init i = firstSF (initSF i)

Substituting the definitions of firstSF and initSF results in the
following definitions:

first init i = SF (g1 (SF (h1 i)))
where

h1 i x = (i ,SF (h1 x ))
g1 f (x , z ) = let (y , f ′) = unSF f x

in ((y , z ),SF (g1 f ′))

Next, inlining the calls to g1 and h1 in the first line gives the
following:

first init i = SF (λ(x , z )→
let (y , f ′) = (i ,SF (h1 x ))
in ((y , z ),SF (g1 f ′)))

where ...

Reducing the let in the above definition gives the following:

first init i = SF (λ(x , z )→ ((i , z ),SF (g1 (SF (h1 x )))))
where ...



a) Unoptimized observe

observe :: ArrowInit arr ⇒ CCNF a b → arr a b
observe (Arr f ) = arr f
observe (LoopD i f ) = loop (arr f ≫ second (init i))

b) Instantiating with SF (with second expanded)

observeSF :: CCNF a b → SF a b
observeSF (Arr f ) = arrSF f
observeSF (LoopD i f ) =

loopSF (arrSF (swap . f ) ≫SF firstSF (initSF i)
≫SF arrSF swap)

c) Naming subexpressions (LoopD case only)

observeSF (LoopD i f ) = loopcomp2 i f

where
arr swapf f = arrSF (swap . f )
arr swap = arrSF swap
first init i = firstSF (initSF i)
i ≫1 f = arr swapf f ≫SF (first init i)
i ≫2 f = i ≫1 f ≫SF arr swap

loopcomp2 i f = loopSF (i ≫2 f )

d) Specializing to known arguments (example: first init )

first init i = firstSF (SF (h1 i))
where

h1 i x = (i ,SF (h1 x ))
...
first init i = SF (λ(x , z )→ ((i , z ),first init x ))
...

e) The optimized observeSF

observeSF (LoopD i f ) = loopD i f
where

loopD :: c → ((a, c)→ (b, c))→ SF a b
loopD i f = SF (λx → let (y , i ′) = f (x , i)

in (y , loopD i ′ f ))

f) Merging in runSF

runCCNF :: CCNF a b → [a ]→ [b ]
runCCNF (LoopD i f ) = g i f

where g i f (x : xs) =
let (y , i ′) = f (x , i) in
in y : g i ′ f xs

g) Merging in !!

nthCCNF :: Int → CCNF () a → a
nthCCNF n (LoopD i f ) = next n i

where
next n i = if n ≡ 0 then x else next (n − 1) i ′

where (x , i ′) = f ((), i)

Figure 7: From unoptimized to optimized observation

But we saw earlier that first init i is equal to SF (g1 (SF (h1 i))),
and so we can replace SF (g1 (SF (h1 x ))) with first init x to
obtain the following simple definition:

first init i = SF (λ(x , z )→ ((i , z ),first init x ))

Similar reasoning for the other parts of the computation eventually
results in the simple implementation of observeSF in Figure 7(e).

data ST s a
instance Monad (ST s)
runST :: (forall s . ST s a)→ a
fixST :: (a → ST s a)→ a

data STRef s a
newSTRef :: a → ST s (STRef s a)
readSTRef :: STRef s a → ST s a
writeSTRef :: STRef s a → a → ST s ()

Figure 8: ST monad and mutable references

Merging observeSF with observation for SF The reasoning
above has given us an observe function that is optimized for the
CCA normal form and for the SF instance. However, SF is not typ-
ically used directly. Instead, the following function, which serves
as a kind of observation function for SF , turns an SF stream trans-
former into a transformation on concrete streams:

runSF :: SF a b → [a ]→ [b ]
runSF (SF f ) (x : xs) = let (y , f ′) = f x

in y : g f ′ xs

Similar reasoning to that used above allows us to fuse the compo-
sition runSF . observeSF (Figure 7(f)).

Finally, in cases where we wish to retrieve only a single el-
ement when running an arrow with a constant input stream of
units, even runCCNF introduces unnecessary overhead by consum-
ing and constructing input and output lists. Composing the list-
indexing function !! with runCCNF results in the following func-
tion, which avoids the construction of the intermediate list alto-
gether (Figure 7(g)).

5. Handling Mutable States
Up to this point, our treatment of state has been purely functional:
the init operator extends a pure computation with internal states,
and the transition function in a CCNF maps one state to another in
a purely functional manner. Threading states through computations
in this way is reminiscent of the state monad, which is formulated
in Haskell as follows:

newtype State s a = State (s → (a, s))
instance Monad (State s) where ...

The Monad instance of State s ensures that all operations on the
internal state of type s are sequentially ordered: monadic composi-
tion passes the state along in a linear manner, guaranteeing a deter-
ministic result in spite of laziness.

For programs where this purely functional encoding of mutable
state is unacceptably inefficient the ST monad (Launchbury and
Peyton Jones 1994) offers an interface to genuinely mutable state.
Figure 8 shows the ST monad and its related operations in Haskell.
Conceptually, we view the type ST s a as follows:

type ST s a = State# s → (a,State# s)

where the type s is phantom – i.e. used only for type safety, not as
actual type of any data in the program. In the actual ST library, the
type ST is abstract, so that users cannot directly access values of
type State# s; instead they must use supported primitive operations
where the state remains hidden, including those for the mutable
reference STRef type, shown in Figure 8.

ST comes with a number of useful guarantees. First, since
ST s is a legitimate instance of the Monad class, the primitive
operations on STRef are guaranteed to be sequenced. Further, the
type of the observation function, runST , ensures that the phantom



type variable s , which is used to index the STRef values in a com-
putation, cannot “escape” into the surrounding context. Since the
types of such mutable references (and hence the references them-
selves) can not be accessed outside the call to runST , mutations to
STRef values constitute a benign effect: computations via runST
are indistinguishable from pure terms.

5.1 Implementing CCA with the ST Monad
The similarity between CCA and the state monad suggests a ques-
tion: is there a more efficient implementation of CCA based on mu-
table state? After all, the commutativity and product laws already
assert that any side effect on a state internal to a CCA is isolated,
and only affects future states of the same arrow when run. The ques-
tion then becomes whether we can implement mutable states as an
ArrowInit instance in Haskell. We give one such implementation
in Figure 9, where mutation is suitably handled by the ST monad.
The difference between CCNFST and the previously seen CCNF
data type is in the LoopDST constructor:

LoopDST :: ST s c → (c → a → ST s b)→ CCNFST s a b

The idea here is that instead of passing immutable states as values,
we have as the first argument to LoopDST an ST action that initial-
izes an mutable state. The type variable c here can be any mutable
data type allowed in an ST monad, for instance, STRef . The state
transition function (second argument to LoopDST ) will then take
the mutable object of type c, and an input of type a to compute the
arrow output of type b, all in an ST monad threaded by the same
phantom variable s as used by the initialization. Note that there is
no state being returned as a result, because the transition function
can directly mutate it in-place.

We give a definition of ArrowInit instance for CCNFST in
Figure 9, where the init arrow uses newSTRef i as the action
to initialize a mutable reference of the STRef type, which is then
passed to the transition function f that can read and write to it.
Other instance declarations in Figure 9 are mostly straightforward,
where the sequential composition of two LoopDST s are just com-
position of two initialization actions, and two transition actions.
The ArrowLoop instance of loopST make use of recursive monad
(hence the rec keyword) to “tie-the-knot” between the second in-
put and the second output values of this arrow. ST monad is a
valid instance of MonadFix , where value-level recursion is im-
plemented by fixST (Figure 8).

Any generic CCA can be instantiated to type CCNFST ; and all
we need is a way to run them. We give the following definition of
sampling the nth element in the output stream of an CCNFST s
arrow taking no input:

nthST :: Int → (forall s . CCNFST s () a)→ a
nthST n nf = runST (nth ′

ST n nf )

nth ′
ST :: Int → CCNFST s () a → ST s a

nth ′
ST n (ArrST f ) = return (f ())

nth ′
ST n (LoopDST i f ) = do

g ← fmap f i
let next n = do

x ← g ()
if n 6 0 then return x else next (n − 1)

next n

As with runST , nthST uses an existential type to enclose the
phantom type variable s , and the helper function nth ′

ST takes
care of the actual unfolding. All initialization of the mutable state
happens only once outside of the actual iteration function next
because all state references remain unchanged: it is their values
that are mutated in-place.

data CCNFST s a b where
ArrST :: (a → b)→ CCNFST s a b
LoopDST :: ST s c → (c → a → ST s b)→

CCNFST s a b

instance Arrow (CCNFST s) where
arr = ArrST

ArrST f ≫ ArrST g = ArrST (g . f )
ArrST f ≫ LoopDST i g = LoopDST i h

where h i = g i . f
LoopDST i f ≫ ArrST g = LoopDST i h

where h i = fmap g . f i
LoopDST i f ≫ LoopDST j g = LoopDST k h

where k = liftM2 (, ) i j
h (i , j ) x = f i x >>= g j

first (ArrST f ) = ArrST (first f )
first (LoopDST i f ) = LoopDST i g

where g i (x , y) = liftM (, y) (f i x )

instance ArrowLoop (CCNFST s) where
loop (ArrST f ) = ArrST (trace f )
loop (LoopDST i f ) = LoopDST i h

where h i x = do
rec (y , j )← f i (x , j )
return y

instance ArrowInit (CCNFST s) where
init i = LoopDST (newSTRef i) f

where f i x = do
y ← readSTRef i
writeSTRef i x
return y

Figure 9: An ST monad based CCA implementation

5.2 Proving CCA Laws for CCNFST

Implementing CCA using ST monad may have given us the access
to mutable states, but wouldn’t the stringent linearity imposed by
monads be too restrictive for CCA? In particular, it is hard to
imagine that the commutativity law would hold for the CCNFST

arrow. We give a sketch of our proofs below.

Commutativity law Proof by case analysis. The cases involving
pure arrows in the form of ArrST are trival. The core of the
proof for commutativity of LoopDST reduces to proving that the
following equation holds:

LoopDST (liftM2 (, ) si sj) (λ(i , j ) x →
liftM2 (, ) (f i x ) (g j x ))

≡ LoopDST (liftM2 (, ) sj si) (λ(j , i) x →
fmap swap $ liftM2 (, ) (g j x ) (f i x ))

As usual, we interpret the equality extensionally: the equation holds
if and only if the two sides are observably equivalent, using an
observation function similar to nthST . After unfolding both sides
into the observe function, we are left to prove that the monadic
sequencing of si and sj , and of f i x and g j x actually commutes.
In order to show this we require that effectful operations on distinct
STRef objects do not interfere with each other, allowing us to
change the order of si and sj , or f and g without affecting the
output of the observe function. While this property does not hold in
general cases, it does hold in the restricted use of STRef objects in
our definitions for CCNFST instances and nthST , which ensure
that f has no access to j and g has no access to i . The fact that the



only effectful operation in the CCNFST arrow is about STRef
completes this proof.

Product law To prove the product law holds for the CCNFST

arrow, we again have to resort to extensionality. Proving the product
law amounts to showing the reasonable property that using a pair
of two distinct STRef s is equivalent to using one STRef of a pair.
We omit the proof detail here.

5.3 Application: Sound Synthesis Circuits
A popular application of arrows is found in the domain of audio
processing and sound synthesis. Both Yampa (Giorgidze and Nils-
son 2008) and Euterpea (Hudak et al. 2015) are arrow based DSLs
that have been successfully applied to modeling sound generating
circuits.

Sound waves are usually produced at a preset signal rate for
digital audio. For instance, 44100Hz is considered a standard fre-
quency. Hence circuits for sound synthesis often fit well into a syn-
chronous data-flow model, where the unit of time corresponds to
the inverse of signal rate. Like electronic circuits, circuits for sound
synthesizers have feedback loops. Besides unit delays, they often
have to delay signals on the wire for a certain time interval, which
conceptually is equivalent to piping a discretized audio data stream
through a buffered queue of a given size that is greater than 1. This
is what is commonly known as a delay line. We can extend the
ArrowInit class to provide this new operation:

class ArrowInit arr ⇒ BufferedCircuit arr where
initLine :: Int → a → arr a a

delayLine :: (Num a,BufferedCircuit arr)⇒
Time → arr a a

delayLine t = initLine (floor (t / sr)) 0

sr = 44100 -- signal rate

The delayLine function takes a time interval and returns an arrow
of the BufferedCircuit class that carries internally a buffer of a size
calculated from the standard audio signal rate sr , initialized to 0.
The first argument to initLine specifies the size of this buffer, and
the second argument is the initial value for the buffer. Conceptually
a delay line of size n is equivalent to n unit delays, or we can state
it as:

initLine n i = foldr1 (≫) (replicate n (init i))

However, the above definition does not make an efficient imple-
mentation, and this is where our ST monad based CCA implemen-
tation comes in handy, because a size n buffer can be directly im-
plemented as a size n mutable vector as follows, where we use
Vector to refer to the mutable vector module from the Haskell vec-
tor package: 1

instance BufferedCircuit (CCNFST s) where
initLine size i = LoopDST newBuf updateBuf

where
newBuf = do

b ← Vector .new size
Vector .set b i
r ← newSTRef 0
return (b, r)

updateBuf (b, r) x = do
i ← readSTRef r
x ′ ← Vector .unsafeRead b i
Vector .unsafeWrite b i x

1 If a strict vector is used (e.g. unboxed vector), we need to ensure that
initLine is sufficiently lazy to work with loop, which can be achieved by
composing initLine with an extra init 0.

flute :: BufferedCircuit a ⇒ Time → Double →
Double → Double → Double → a () Double

flute dur amp fqc press breath =
proc ()→ do

env1 ← envLineSeg [0, 1.1 ∗ press, press, press, 0]
[0.06, 0.2, dur − 0.16, 0.02]−≺ ()

env2 ← envLineSeg [0, 1, 1, 0]
[0.01, dur − 0.02, 0.01]−≺ ()

envib ← envLineSeg [0, 0, 1, 1]
[0.5, 0.5, dur − 1]−≺ ()

flow ← noiseWhite 42 −≺ ()
vib ← osc sineTable 0−≺ 5
let emb = breath ∗ flow ∗ env1 + env1 +

vib ∗ 0.1 ∗ envib
rec flute ← delayLine (1 / fqc)−≺ out

x ← delayLine (1 / fqc / 2)−≺ emb + flute ∗ 0.4
out ← filterLowPassBW−≺

(x − x ∗ x ∗ x + flute ∗ 0.4, 2000)
returnA−≺ out ∗ amp ∗ env2

shepard :: BufferedCircuit a ⇒ Time → a () Double
shepard seconds = if seconds 6 0.0

then arr (const 0.0)
else proc → do

f ← envLineSeg [800, 100, 100] [4.0, seconds ]−≺ ()
e ← envLineSeg [0, 1, 0, 0] [2.0, 2.0, seconds ]−≺ ()
s ← osc sineTable 0−≺ f
r ← delayLine 0.5 ≪ shepard (seconds − 0.5)−≺ ()
returnA−≺ (e ∗ s ∗ 0.1) + r

Figure 10: flute and shepard synthesis program

let i ′ = if i + 1 > size then 0 else i + 1
writeSTRef r i ′

return x ′

The internal state to initLine is a tuple (b, r) where b is a mutable
vector that acts as a circular buffer, and r is a STRef storing the
position to read the next buffered value, incremented each time
a new input arrives. Because this position wraps around and is
guaranteed to be always in the range of [0, size), direct use of the
non-bounds checking unsafeRead and unsafeWrite operations
would still be safe.

Since initLine is implemented as a CCNFST , we automat-
ically gain the ability to optimize all buffered circuits by nor-
malizing them, because all CCNFST arrows are valid CCAs by
construction. As a comparison, the existing Euterpea implementa-
tion also uses mutable arrays under the hood, but has to rely on
unsafePerformIO to operate them, which actually triggers a sub-
tle correctness bug when GHC optimization is enabled. We there-
fore consider our implementation of CCNFST as a safe and sound
alternative to implementing arrow-based audio and sound process-
ing circuits.

Finally, Figure 10 gives two sample synthesis programs used to
measure performance in the next section. They are direct ports from
Euterpea with little modification.

The flute function simulates the physical model of a slide-flute.
It takes a set of parameters that controls various aspects of the out-
put sound wave, and uses a number of helper functions including a
source from random white noise, envelope control using segmented
line and so on. The use of delayLine here simulates a traveling
wave and its reflection. We omit the definitions of these helper func-



tions here, and instead refer our readers to Cheng and Hudak (2009)
for additional details.

The second example shepard may look slightly simpler than
flute , but has an intriguing structure: it is a recursively defined
arrow. It takes a duration in seconds as input, and additively builds
up an oscillating wave signal by summing up all signals returned
from recursively calling itself with a duration that is 0.5 second
less. The use of arrow-level recursion makes a complex structure.
Note that this is different from having a feedback loop, because the
parameter seconds affects both the setting and composition of the
arrow’s structural components, not just its input or output.

6. Performance Measurement and Analysis
In this section, we study the performance characteristics of differ-
ent CCA interpretations including SF , CCNF , and CCNFST , and
compare them with the existing Template Haskell based normaliza-
tion by measuring the running time of 8 benchmark programs.

6.1 Benchmarks and Measuring Methods
We use the following benchmarks:

• A micro-benchmark fib that computes the Fibonacci sequence
using big integers.

• All the micro-benchmarks discussed in Liu et al. (2009), in-
cluding exp, a sine wave with fixed frequency using Goertzel’s
method, an oscSine wave with variable frequency, the 50’s
sci-fi sound synthesis program from Giorgidze and Nilsson
(2008), and the robot simulator from Hudak et al. (2003).

• The flute and shepard sound synthesis from Section 5.3. We
consider these macro-benchmarks due to their complexity and
their reliance on mutable state for efficiency. Since both use
delayLine , we additionally defined a BufferedCircuit in-
stance for both SF and CCNF as well. We took extra caution
to ensure our implementation is free of the correctness bug af-
fecting Euterpea despite that we had to use unsafePerformIO
too. Such details are tricky to get right, fragile and prone to
future changes in the compiler.

Our use of the “micro-” and “macro-benchmark” terminology is by
no means scientific, and must be taken in a relative context.

All programs are written with arrow notation as generic compu-
tations parameterized by an arrow type variable. We can therefore
reuse the same source code for the SF , CCNF , and CCNFST ver-
sions of these benchmarks; the only difference is in the observation
functions. For the Template Haskell versions, we first desugar all
programs from arrow notation into arrow combinators using a pre-
processor from the publicly available CCA package, and normalize
these programs to pairs of initial value and transition function. The
normalized programs are then sampled with a similar nth function
used for CCNF arrows.

We use the Criterion benchmarking package for Haskell to
measure the time taken for the nth function to compute 44100 ×
5 = 2, 205, 000 samples, which is equivalent to 5 seconds of audio
for sound synthesis programs. All benchmarks are compiled with
GHC 7.10.3 using the flags -O2 -funfolding-use-limit=512
on a 64-bit Linux machine with Intel Xeon CPU E5-2680 2.70GHz.

To ensure consistent performance across all implementations,
we additionally annotate all generic arrow computations with
SPECIALIZE and INLINE pragmas, though these are not strictly
required in most cases. The flag -funfolding-use-limit=512
prompts GHC to inline larger terms than it would by default, in-
cluding the substantial arrow terms which can result from normal-
ization. Of course, these settings are not guaranteed to improve the
performance of all arrow programs.

6.2 Overall Benchmarking Result
Figure 11 shows the benchmarking result for the 8 programs under
each of the four implementations (SF , CCNF , CCNFST , and
Template Haskell). We report both the mean kernel time and the
relative performance speedups using SF as a baseline. Also shown
are the number of internal states and loop counts in the source
of each benchmark, which give rough estimates of the program
complexity.

We make a few observations on the data reported in Figure 11.
First, for micro-benchmarks, the CCNF implementation is as

fast as the original Template Haskell implementation. It appears
that our instance-based normalization, combined with GHC’s op-
timizations, appears able to normalize these CCA computations at
compile time as effectively as the Template Haskell implementa-
tion. For macro-benchmarks like flute and shepard , CCNF lags
behind the CCNFST and Template Haskell implementations.

On the other hand, CCNFST is significantly slower than
CCNF for micro-benchmarks, likely due to the overhead in-
troduced by the ST monad. For flute and shepard , however,
CCNFST significantly outperforms CCNF , even though both use
mutable buffers to implement delay line. In fact, CCNFST even
outperforms the Template Haskell version of shepard .

For fib, normalization seems less effective than for the other
benchmarks, barely doubling the performance of the SF version.
This is a scenario where the arrow overhead (of a simple struc-
ture) weighs much less than the real computation (big integer arith-
metic), so optimizing away the intermediate structure does not save
as much. But the 2× performance gain is still worthwhile!

6.3 Analyzing the Performance of CCNF

As discussed in Section 3, our implementation for CCNF is sys-
tematically derived first from a normalization by interpretation
strategy, and then specialized to the observe function. We have al-
ready seen the effects of the combined optimization strategy (Fig-
ure 11), but it is interesting to investigate how much of the perfor-
mance improvements comes from normalization, and how much
from specialization.

To measure the normalization contribution, the same arrow pro-
grams are normalized by the observe function to a generic arrow
and then specialized to the SF type and sampled by nthSF . A per-
centage is calculated by comparing with the full CCNF implemen-
tation. The remaining speedups can then be attributed to special-
izing to the CCNF type and sampled by the optimized nthCCNF

function. We show this percentage of performance contribution in
Figure 12, which is sorted from left-to-right in an ascending order
of the contribution percentage of normalization.

We observe that normalization contributes a bigger percentage
to the overall speedup for fib, flute and shepard , where the amount
of real computation greatly outweighs the remaining overhead in
an normalized SF arrow. This is to be expected, and hence the
graph is a good indication of what kind of workloads are likely to
benefit more from normalization than specialization. It is also not
a coincidence that the four benchmarks to the left of the graph,
exp, sine , oscSine and robot , graph are also the ones seeing
most significant speedups (from 60× to 242× in Figure 11), where
eliminating the final arrow overheads gives a greater improvement
to their overall performance.

6.4 Analyzing the Performance of CCNFST

The performance of CCNFST also begs for more explanation.
Looking at the time difference between CCNFST and CCNF for
oscSine , sci-fi and robot , we notice an intriguing correlation be-
tween the kernel time and the number of loops in a program: each
loop accounts for about 80ms difference between CCNFST and
CCNF . The explanation is rather simple. We translate the loop



Benchmark Unnormalized Normalized
Name States Loops SF CCNF CCNFST Template Haskell

fib 2 1 480 209.8 (2.29×) 222.7 (2.16×) 209.2 (2.30×)
exp 1 2 292 1.204 (242×) 79.44 (3.67×) 1.206 (242×)

sine 2 1 229 1.845 (124×) 7.260 (31.5×) 1.570 (146×)
oscSine 1 1 216 3.557 (60.6×) 84.72 (2.54×) 3.558 (60.6×)

sci-fi 3 3 859 30.99 (27.7×) 252.7 (3.40×) 31.32 (27.4×)
robot 5 4 1162 11.13 (104×) 356.2 (3.26×) 12.02 (96.7×)
flute 16 7 3087 604.4 (5.10×) 285.5 (10.8×) 190.3 (16.2×)

shepard 80 30 20490 2741 (7.47×) 1319 (15.5×) 1590 (12.9×)
time (baseline) time speedup time speedup time speedup

Figure 11: Benchmark kernel time (ms) and speedup
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Figure 12: Performance contribution breakdown (pecentage)

combinator for CCNFST into a recursive ST monad, which corre-
sponds to a call to fixST . Examining the compiled code in GHC
Core for our benchmarks reveals that a recursive data structure
STRep remains in the program for every fixST , preventing GHC
from statically optimizing recursions at the value level.

As we move to more complex programs, however, the situa-
tion dramatically changes: the CCNFST implementation becomes
twice as fast as CCNF for both flute and shepard . While the
Template Haskell version may appear to still lead the performance
for flute and only slight lags behind for shepard , this is actu-
ally no longer the case as program complexity increases further.
Since shepard is a recursively defined arrow, it is straightforward
to increase its computational workload by increasing the input
size. Figure 13 compares the running time for shepard with the
CCNF , CCNFST and Template Haskell implementations. The X-
axis shows different input sizes, where every 0.5 second increment
corresponds to 8 additional states and 5 additional loops. The Y-
axis shows the output rate, i.e., the number of samples produced
per second.

Figure 13 shows that as input size increases, the output rate of
all implementations reduces in inverse proportion. As the input size
increase, CCNF stays around half the speed of CCNFST , while
the relative speed of the Template Haskell implementation plum-
mets. From left to right, the Template Haskell version goes from
80% of CCNFST performance to only half. Clearly the Template
Haskell version contains overheads that are not present in either
CCNF or CCNFST . Our understanding is that the normalization
implemented via Template Haskell has to expand the entire arrow
at compile time. In contrast, both CCNF and CCNFST are able
to perform normalization at runtime, and although not all arrow
structures are statically optimized away, computations at individ-
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Figure 13: Performance of shepard on different inputs

ual components are shared rather than expanded and duplicated as
in the Template Haskell case.

Moreover, the reason that CCNFST performs better than
CCNF for real workloads is that implementing mutable states
through the ST monad has an advantage “at scale”: it avoids build-
ing up large number of nested tuples at runtime. Comparing their
respective sampling functions nthST and nthCCNF , we find that
in each iteration nthCCNF has to construct a new state as a nested
tuple only for it to be destructed by the transition function immedi-
ately. In contrast, nthST constructs a single nested tuple of mutable
references only at the initialization stage.

6.5 Final Remark
It is clear that our technique relies on the actual Haskell compiler to
do the heavy lifting. Or put in another way, we have demonstrated
a simple and yet effective approach to help GHC better optimize
high-level arrow programs without sacrificing usability or modu-
larity. However, as GHC’s optimizer has grown in complexity over
the years, performance tuning becomes a challenging task and re-
quires a good knowledge of GHC’s internals just to understand the
results. For this reason, we have restrained ourselves from resort-
ing to more obscure and GHC-specific features to pursue further
performance gain in the hope that our approach remains generally
applicable.

As much as we appreciate GHC’s amazing ability to simplify
complex programs, we still find there is room for improvements.
For example, examining the optimized GHC Core of CCNF or
CCNFST versions of flute shows that not all intermediate struc-
tures (including boxed numerical values) are eliminated statically.
In particular, for the CCNFST version, we would very much like to



see the nested tuple of mutable references to be completely inlined
into the transformer function. We have experimented with alterna-
tives such as strict and/or unboxed tuples, but have yet to find a
satisfying solution. Likewise, GHC is often very effective at break-
ing the recursive “knot” that is introduced by the trace function,
but unable to do so as soon as an intermediate data structure is
present, as in the case of unfolding an recursive ST monad. We
leave further explorations to future work.

7. Related Work
Representing arrow computations as data The technique of rep-
resenting arrow computations with a data type in order to optimize
computations using the laws appears several times in the literature.
Hughes (2005) gives a representation of arrow computations that
can be used to eliminate the composition of adjacent pure compu-
tations, and suggests extending the technique further, but does not
measure performance improvements. Nilsson (2005) uses the first
four arrow laws (left and right identity, associativity and compo-
sition) together with a first-order representation of SF to optimize
Yampa, and achieves some modest performance improvements (up
to around 2x). Yallop (2010) shows how to use the laws together
with a data type for representing normal forms to fully normalize
Arrow (but not ArrowLoop or ArrowInit) computations, but does
not report any performance improvements.

In each case, the key insight that the normal form enables fur-
ther optimizations in the observation function seems to be missing;
it is this insight that led to the most significant performance im-
provements in our benchmarks (Figure 12, Section 6.3).

Generalized arrows This paper focuses on the optimization of
arrow computations, paying relatively little attention to the pure
functions which are lifted into computations using the arr oper-
ator, although the efficient compilation of these functions is often
crucial to performance. Joseph (2014) describes a generalization
of the Arrow class which makes it possible to explicitly represent
many pure functions in order to support non-standard compilation
strategies such as compilation to hardware. It would be interesting
to see whether the generalized arrow interface can further improve
the results described in this work.

Deriving implementations of instances and functions The tech-
nique of deriving implementations by equational reasoning, whether
of type class instances using the class laws (Section 3), or of func-
tions using the standard equations of the language (Section 4) is
standard, and used to great effect in many places in the functional
programming literature. Hinze (2000) gives an early and represen-
tative example of deriving a general purpose instance (of a monad
transformer) by equational reasoning using the laws associated
with the class.

“Free” representations As Section 3.1 mentions, our normal
form representation can be viewed as a “free” representation of
arrow computations. Several researchers have investigated trans-
formations involving free representations to optimize (typically
monadic) computations, and for related applications. Voigtländer
(2008) uses an optimized instance to reassociate computations over
free monads to improve their asymptotic complexity from quadratic
to linear. Kiselyov and Ishii (2015) use so-called freer monads
(which liberate free monads from the Functor constraint) as a
basis for an optimized implementation of extensible effects, and
includes an extensive review of previous occurrences of similar
constructions in the literature.

Earlier work on CCA Finally, we have already devoted consider-
able space to the previous work on causal commutative arrows and
their optimization (Liu et al. 2009, 2011). An early version of the
instance-based normalization presented here is given in Liu (2011),
but the author did not observe any performance improvements us-
ing the technique.
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