
1/22

Causal Commutative Arrows Revisited

Jeremy Yallop Hai (Paul) Liu

University of Cambridge Intel Labs

September 21, 2016

2/22

Normalization as an optimization technique?

I Plausible, because it preserves semantics.
I Effective, when conditions are met:

I It has to terminate;
I It gives simpler program as a result;
I It enables other optimizations.

I with a few catches:
I Strongly normalizing can be too restrictive;
I Sharing is hard to preserve;
I Static or dynamic implementation?

2/22

Normalization as an optimization technique?

I Plausible, because it preserves semantics.

I Effective, when conditions are met:
I It has to terminate;
I It gives simpler program as a result;
I It enables other optimizations.

I with a few catches:
I Strongly normalizing can be too restrictive;
I Sharing is hard to preserve;
I Static or dynamic implementation?

2/22

Normalization as an optimization technique?

I Plausible, because it preserves semantics.
I Effective, when conditions are met:

I It has to terminate;
I It gives simpler program as a result;
I It enables other optimizations.

I with a few catches:
I Strongly normalizing can be too restrictive;
I Sharing is hard to preserve;
I Static or dynamic implementation?

2/22

Normalization as an optimization technique?

I Plausible, because it preserves semantics.
I Effective, when conditions are met:

I It has to terminate;
I It gives simpler program as a result;
I It enables other optimizations.

I with a few catches:
I Strongly normalizing can be too restrictive;
I Sharing is hard to preserve;
I Static or dynamic implementation?

2/22

Normalization as an optimization technique?

I Plausible, because it preserves semantics.
I Effective, when conditions are met:

I It has to terminate;
I It gives simpler program as a result;
I It enables other optimizations.

I with a few catches:
I Strongly normalizing can be too restrictive;
I Sharing is hard to preserve;
I Static or dynamic implementation?

3/22

Arrows
Arrows are a generalization of monads (Hughes 2000).

class Arrow (arr :: ∗ → ∗ → ∗) where
arr :: (a→ b)→ arr a b
(≫) :: arr a b → arr b c → arr a c
first :: arr a b → arr (a, c) (b, c)

class Arrow arr ⇒ ArrowLoop arr where
loop :: arr (a, c) (b, c)→ arr a b

(a) arr f (b) f ≫ g (c) first f

(d) second f (e) f ??? g (f) loop f

4/22

Arrow and ArrowLoop laws

arr id ≫ f ≡ f (left identity)
f ≫ arr id ≡ f (right identity)

(f ≫ g) ≫ h ≡ f ≫ (g ≫ h) (associativity)
arr (g . f) ≡ arr f ≫ arr g (composition)
first (arr f) ≡ arr (f ×id) (extension)

first (f ≫ g) ≡ first f ≫ first g (functor)
first f ≫ arr (id×g) ≡ arr (id×g) ≫ first f (exchange)

first f ≫ arr fst ≡ arr fst ≫ f (unit)
first (first f) ≫ arr assoc ≡ arr assoc ≫ first f (association)

loop (first h ≫ f) ≡ h ≫ loop f (left tightening)
loop (f ≫ first h) ≡ loop f ≫ h (right tightening)

loop (f ≫ arr (id×k)) ≡ loop (arr (id×k) ≫ f) (sliding)
loop (loop f) ≡ loop (arr assoc -1 . f . arr assoc) (vanishing)

second (loop f) ≡ loop (arr assoc . second f . arr assoc -1) (superposing)
loop (arr f) ≡ arr (trace f) (extension)

5/22

Normalizing arrows (a dataflow example)

(a) original

(b) normalized

5/22

Normalizing arrows (a dataflow example)

(a) original

(b) normalized

6/22

Causal Commutative Arrows

CCA is a more restricted arrow with an additional init combinator:

class ArrowLoop arr ⇒ ArrowInit arr where
init :: a→ arr a a

and two additional arrow laws:

first f ≫ second g ≡ second g ≫ first f (commutativity)
init i ??? init j ≡ init (i , j) (product)

Causal Commutative Normal Form (CCNF) is either a pure arrow,
or a single loop containing a pure arrow and an initial state:

loopD :: ArrowInit arr ⇒ c → ((a, c)→ (b, c))→ arr a b
loopD i f = loop (arr f ≫ second (init i))

Proved by algebraic arrow laws. (Liu et al. ICFP2009, JFP2010)

6/22

Causal Commutative Arrows

CCA is a more restricted arrow with an additional init combinator:

class ArrowLoop arr ⇒ ArrowInit arr where
init :: a→ arr a a

and two additional arrow laws:

first f ≫ second g ≡ second g ≫ first f (commutativity)
init i ??? init j ≡ init (i , j) (product)

Causal Commutative Normal Form (CCNF) is either a pure arrow,
or a single loop containing a pure arrow and an initial state:

loopD :: ArrowInit arr ⇒ c → ((a, c)→ (b, c))→ arr a b
loopD i f = loop (arr f ≫ second (init i))

Proved by algebraic arrow laws. (Liu et al. ICFP2009, JFP2010)

7/22

Application: stream transformers as arrows

newtype SF a b = SF {unSF :: a→ (b, SF a b)}
instance Arrow SF where
arr f = g where g = SF (λx → (f x , g))
f ≫ g = ...
first f = ...

instance ArrowLoop SF where ...
instance ArrowInit SF where ...

We can run a stream transformer over an input stream:

runSF :: SF a b → [a]→ [b]
runSF (SF f) (x : xs) = let (y , f ′) = f x in y : runSF f ′ xs
nthSF :: Int → SF () a→ a
nthSF n sf = runSF sf (repeat ()) !! n

7/22

Application: stream transformers as arrows

newtype SF a b = SF {unSF :: a→ (b, SF a b)}
instance Arrow SF where
arr f = g where g = SF (λx → (f x , g))
f ≫ g = ...
first f = ...

instance ArrowLoop SF where ...
instance ArrowInit SF where ...

We can run a stream transformer over an input stream:

runSF :: SF a b → [a]→ [b]
runSF (SF f) (x : xs) = let (y , f ′) = f x in y : runSF f ′ xs
nthSF :: Int → SF () a→ a
nthSF n sf = runSF sf (repeat ()) !! n

8/22

Performance Comparison

Orders of magnitude speedup (JFP2010):

Name SF CCNF sf CCNF tuple

exp 1.0 30.84 672.79
sine 1.0 18.89 442.48
oscSine 1.0 14.28 29.53
50’s sci-fi 1.0 18.72 21.37
robotSim 1.0 24.67 34.93

Table : Performance Ratio (greater is better)

Normalization of CCA programs seems very effective!

But why is everyone not using it??
Not even used by Euterpea, the music and sound synthesis
framework from the same research group!

8/22

Performance Comparison

Orders of magnitude speedup (JFP2010):

Name SF CCNF sf CCNF tuple

exp 1.0 30.84 672.79
sine 1.0 18.89 442.48
oscSine 1.0 14.28 29.53
50’s sci-fi 1.0 18.72 21.37
robotSim 1.0 24.67 34.93

Table : Performance Ratio (greater is better)

Normalization of CCA programs seems very effective!
But why is everyone not using it??

Not even used by Euterpea, the music and sound synthesis
framework from the same research group!

8/22

Performance Comparison

Orders of magnitude speedup (JFP2010):

Name SF CCNF sf CCNF tuple

exp 1.0 30.84 672.79
sine 1.0 18.89 442.48
oscSine 1.0 14.28 29.53
50’s sci-fi 1.0 18.72 21.37
robotSim 1.0 24.67 34.93

Table : Performance Ratio (greater is better)

Normalization of CCA programs seems very effective!
But why is everyone not using it??
Not even used by Euterpea, the music and sound synthesis
framework from the same research group!

9/22

Pitfalls of the CCA implementation

The initial CCA library was implemented using Template Haskell, because:

I Normalization is a syntactic transformation;
I Meta-level implementation guarantees normal form at compile time;
I TH is less work than a full-blown pre-processor.

However, TH based static normalization is:
I restricted to first-order, no reactivity, etc.
I hard to program with:

f x = ...[| ...x ... |] ...
... $(norm g) ...

I perhaps not as effective as we had thought for “real” applications?

9/22

Pitfalls of the CCA implementation

The initial CCA library was implemented using Template Haskell, because:

I Normalization is a syntactic transformation;
I Meta-level implementation guarantees normal form at compile time;
I TH is less work than a full-blown pre-processor.

However, TH based static normalization is:
I restricted to first-order, no reactivity, etc.

I hard to program with:

f x = ...[| ...x ... |] ...
... $(norm g) ...

I perhaps not as effective as we had thought for “real” applications?

9/22

Pitfalls of the CCA implementation

The initial CCA library was implemented using Template Haskell, because:

I Normalization is a syntactic transformation;
I Meta-level implementation guarantees normal form at compile time;
I TH is less work than a full-blown pre-processor.

However, TH based static normalization is:
I restricted to first-order, no reactivity, etc.
I hard to program with:

f x = ...[| ...x ... |] ...
... $(norm g) ...

I perhaps not as effective as we had thought for “real” applications?

9/22

Pitfalls of the CCA implementation

The initial CCA library was implemented using Template Haskell, because:

I Normalization is a syntactic transformation;
I Meta-level implementation guarantees normal form at compile time;
I TH is less work than a full-blown pre-processor.

However, TH based static normalization is:
I restricted to first-order, no reactivity, etc.
I hard to program with:

f x = ...[| ...x ... |] ...
... $(norm g) ...

I perhaps not as effective as we had thought for “real” applications?

10/22

How about run-time normalization?

from: Paul Liu
to: Jeremy Yallop
cc: Paul Hudak, Eric Cheng
date: 18 June 2009

I wonder if there is any way to optimize GHC’s
output based on your code since the CCNF is
actually running slower

“. . . that the actual construction of CCNF is now at run-time
rather than compile-time. Therefore, we cannot rely on GHC to
take the pure function and state captured in a CCNF and
produce optimized code. . . ” (Liu 2011)

10/22

How about run-time normalization?

from: Paul Liu
to: Jeremy Yallop
cc: Paul Hudak, Eric Cheng
date: 18 June 2009

I wonder if there is any way to optimize GHC’s
output based on your code since the CCNF is
actually running slower

“. . . that the actual construction of CCNF is now at run-time
rather than compile-time. Therefore, we cannot rely on GHC to
take the pure function and state captured in a CCNF and
produce optimized code. . . ” (Liu 2011)

10/22

How about run-time normalization?

from: Paul Liu
to: Jeremy Yallop
cc: Paul Hudak, Eric Cheng
date: 18 June 2009

I wonder if there is any way to optimize GHC’s
output based on your code since the CCNF is
actually running slower

“. . . that the actual construction of CCNF is now at run-time
rather than compile-time. Therefore, we cannot rely on GHC to
take the pure function and state captured in a CCNF and
produce optimized code. . . ” (Liu 2011)

11/22

Normalization by construction

1. Define normal form as a data type:

data CCNF a b where
Arr :: (a→ b)→ CCNF a b
LoopD :: c → ((a, c)→ (b, c))→ CCNF a b

2. Observation function:

observe :: ArrowInit arr ⇒ CCNF a b → arr a b
observe (Arr f) = arr f
observe (LoopD i f) = loop (arr f ≫ second (init i))

3. Instances for the data type:

instance Arrow CCNF where ...
instance ArrowLoop CCNF where ...
instance ArrowInit CCNF where ...

11/22

Normalization by construction

1. Define normal form as a data type:

data CCNF a b where
Arr :: (a→ b)→ CCNF a b
LoopD :: c → ((a, c)→ (b, c))→ CCNF a b

2. Observation function:

observe :: ArrowInit arr ⇒ CCNF a b → arr a b
observe (Arr f) = arr f
observe (LoopD i f) = loop (arr f ≫ second (init i))

3. Instances for the data type:

instance Arrow CCNF where ...
instance ArrowLoop CCNF where ...
instance ArrowInit CCNF where ...

11/22

Normalization by construction

1. Define normal form as a data type:

data CCNF a b where
Arr :: (a→ b)→ CCNF a b
LoopD :: c → ((a, c)→ (b, c))→ CCNF a b

2. Observation function:

observe :: ArrowInit arr ⇒ CCNF a b → arr a b
observe (Arr f) = arr f
observe (LoopD i f) = loop (arr f ≫ second (init i))

3. Instances for the data type:

instance Arrow CCNF where ...
instance ArrowLoop CCNF where ...
instance ArrowInit CCNF where ...

12/22

Optimize the observe function

1. Specialize observe to a concrete instance.

observe :: ArrowInit arr ⇒ CCNF a b → arr a b
observeSF :: CCNF a b → SF a b
observeSF (Arr f) = arrSF f
observeSF (LoopD i f) = loopSF (arrSF f ≫SF secondSF (initSF i))

2. Derive an optimized definition.

observeSF (LoopD i f) = loopD i f
where
loopD :: c → ((a, c)→ (b, c))→ SF a b
loopD i f = SF (λx → let (y , i ′) = f (x , i) in (y , loopD i ′ f))

3. Fuse observe with the context in which it is used.

nthCCNF :: Int → CCNF () a→ a
nthCCNF n = nthSF n . observeSF = ...

12/22

Optimize the observe function

1. Specialize observe to a concrete instance.

observe :: ArrowInit arr ⇒ CCNF a b → arr a b
observeSF :: CCNF a b → SF a b
observeSF (Arr f) = arrSF f
observeSF (LoopD i f) = loopSF (arrSF f ≫SF secondSF (initSF i))

2. Derive an optimized definition.

observeSF (LoopD i f) = loopD i f
where

loopD :: c → ((a, c)→ (b, c))→ SF a b
loopD i f = SF (λx → let (y , i ′) = f (x , i) in (y , loopD i ′ f))

3. Fuse observe with the context in which it is used.

nthCCNF :: Int → CCNF () a→ a
nthCCNF n = nthSF n . observeSF = ...

12/22

Optimize the observe function

1. Specialize observe to a concrete instance.

observe :: ArrowInit arr ⇒ CCNF a b → arr a b
observeSF :: CCNF a b → SF a b
observeSF (Arr f) = arrSF f
observeSF (LoopD i f) = loopSF (arrSF f ≫SF secondSF (initSF i))

2. Derive an optimized definition.

observeSF (LoopD i f) = loopD i f
where

loopD :: c → ((a, c)→ (b, c))→ SF a b
loopD i f = SF (λx → let (y , i ′) = f (x , i) in (y , loopD i ′ f))

3. Fuse observe with the context in which it is used.

nthCCNF :: Int → CCNF () a→ a
nthCCNF n = nthSF n . observeSF = ...

13/22

Performance comparison

I Compute 44100× 5 = 2, 205, 000 samples (≈ 5 seconds of audio)
I GHC 7.10.3 using the flags -O2 -funfolding-use-limit=512
I 64-bit Linux, Intel Xeon CPU E5-2680 2.70GHz

Benchmark Unnormalized Normalized
Name States Loops SF CCNF TH

fib 2 1 1.0 2.29 2.30
exp 1 2 1.0 242 242
sine 2 1 1.0 124 146

oscSine 1 1 1.0 60.6 60.6
sci-fi 3 3 1.0 27.7 27.4
robot 5 4 1.0 104 96.7
flute 16 7 1.0 5.10 16.2

shepard 80 30 1.0 7.47 12.9
baseline speedup ratio

14/22

Why it works
I Unlike SF , CCNF is not recursively defined.

data SF a b where
SF :: a→ (b, SF a b)→ SF a b

data CCNF a b where
Arr :: (a→ b)→ CCNF a b
LoopD :: c → ((a, c)→ (b, c))→ CCNF a b

I Hand optimized observe function is the key to get performance.

nthCCNF :: Int → CCNF () a→ a
nthCCNF n = nthSF n . observeSF = ...

I GHC has improved! GHC 6.10 fails to optimize our program.

Compilers help those who help compilers!

14/22

Why it works
I Unlike SF , CCNF is not recursively defined.

data SF a b where
SF :: a→ (b, SF a b)→ SF a b

data CCNF a b where
Arr :: (a→ b)→ CCNF a b
LoopD :: c → ((a, c)→ (b, c))→ CCNF a b

I Hand optimized observe function is the key to get performance.

nthCCNF :: Int → CCNF () a→ a
nthCCNF n = nthSF n . observeSF = ...

I GHC has improved! GHC 6.10 fails to optimize our program.

Compilers help those who help compilers!

14/22

Why it works
I Unlike SF , CCNF is not recursively defined.

data SF a b where
SF :: a→ (b, SF a b)→ SF a b

data CCNF a b where
Arr :: (a→ b)→ CCNF a b
LoopD :: c → ((a, c)→ (b, c))→ CCNF a b

I Hand optimized observe function is the key to get performance.

nthCCNF :: Int → CCNF () a→ a
nthCCNF n = nthSF n . observeSF = ...

I GHC has improved! GHC 6.10 fails to optimize our program.

Compilers help those who help compilers!

14/22

Why it works
I Unlike SF , CCNF is not recursively defined.

data SF a b where
SF :: a→ (b, SF a b)→ SF a b

data CCNF a b where
Arr :: (a→ b)→ CCNF a b
LoopD :: c → ((a, c)→ (b, c))→ CCNF a b

I Hand optimized observe function is the key to get performance.

nthCCNF :: Int → CCNF () a→ a
nthCCNF n = nthSF n . observeSF = ...

I GHC has improved! GHC 6.10 fails to optimize our program.

Compilers help those who help compilers!

15/22

Levels of abstraction

Axiomatic . . . Type class (Arrow laws)

↓ ↓
Denotational . . . Data type (Interpretation)

↓ ↓
Operational . . . Mealy machine (state and transition)

nthCCNF n (LoopD i f) = next n i
where

next n i = if n ≡ 0 then x else next (n − 1) i ′

where (x , i ′) = f ((), i)

15/22

Levels of abstraction

Axiomatic . . . Type class (Arrow laws)
↓ ↓

Denotational . . . Data type (Interpretation)

↓ ↓
Operational . . . Mealy machine (state and transition)

nthCCNF n (LoopD i f) = next n i
where

next n i = if n ≡ 0 then x else next (n − 1) i ′

where (x , i ′) = f ((), i)

15/22

Levels of abstraction

Axiomatic . . . Type class (Arrow laws)
↓ ↓

Denotational . . . Data type (Interpretation)
↓ ↓

Operational . . . Mealy machine (state and transition)

nthCCNF n (LoopD i f) = next n i
where
next n i = if n ≡ 0 then x else next (n − 1) i ′

where (x , i ′) = f ((), i)

15/22

Levels of abstraction

Axiomatic . . . Type class (Arrow laws)
↓ ↓

Denotational . . . Data type (Interpretation)
↓ ↓

Operational . . . Mealy machine (state and transition)

nthCCNF n (LoopD i f) = next n i
where

next n i = if n ≡ 0 then x else next (n − 1) i ′

where (x , i ′) = f ((), i)

16/22

That is not all (performance we could have)

I CCA normalization clusters all states as one nested tuple.

LoopD ((0, ((0, 0), 0)),
(((((buf100), 0), 0), ((0), (((buf50), 0), 0))),
(((0, i), (0, ((0, 0), 0))), ((0, ((0, 0), 0)), (0, ((0, 0), 0))))))

(λ(((((a, f), e), d), c), ...)→ ...)

I Transition function destructs/constructs tuples at every iteration!

next n i = if n ≡ 0 then x else next (n − 1) i ′

where (x , i ′) = f ((), i)

I GHC can only help us so far.
I Real applications demand mutable states (for arrays and so on).

16/22

That is not all (performance we could have)

I CCA normalization clusters all states as one nested tuple.

LoopD ((0, ((0, 0), 0)),
(((((buf100), 0), 0), ((0), (((buf50), 0), 0))),
(((0, i), (0, ((0, 0), 0))), ((0, ((0, 0), 0)), (0, ((0, 0), 0))))))

(λ(((((a, f), e), d), c), ...)→ ...)

I Transition function destructs/constructs tuples at every iteration!

next n i = if n ≡ 0 then x else next (n − 1) i ′

where (x , i ′) = f ((), i)

I GHC can only help us so far.
I Real applications demand mutable states (for arrays and so on).

16/22

That is not all (performance we could have)

I CCA normalization clusters all states as one nested tuple.

LoopD ((0, ((0, 0), 0)),
(((((buf100), 0), 0), ((0), (((buf50), 0), 0))),
(((0, i), (0, ((0, 0), 0))), ((0, ((0, 0), 0)), (0, ((0, 0), 0))))))

(λ(((((a, f), e), d), c), ...)→ ...)

I Transition function destructs/constructs tuples at every iteration!

next n i = if n ≡ 0 then x else next (n − 1) i ′

where (x , i ′) = f ((), i)

I GHC can only help us so far.

I Real applications demand mutable states (for arrays and so on).

16/22

That is not all (performance we could have)

I CCA normalization clusters all states as one nested tuple.

LoopD ((0, ((0, 0), 0)),
(((((buf100), 0), 0), ((0), (((buf50), 0), 0))),
(((0, i), (0, ((0, 0), 0))), ((0, ((0, 0), 0)), (0, ((0, 0), 0))))))

(λ(((((a, f), e), d), c), ...)→ ...)

I Transition function destructs/constructs tuples at every iteration!

next n i = if n ≡ 0 then x else next (n − 1) i ′

where (x , i ′) = f ((), i)

I GHC can only help us so far.
I Real applications demand mutable states (for arrays and so on).

17/22

Local mutable state via ST Monad

ST Monad in Haskell:
data ST s a = ...
runST :: (forall s . ST s a)→ a
fixST :: (a→ ST s a)→ a

Use ST type as our state:

data CCNF ST s a b where
ArrST :: (a→ b)→ CCNF ST s a b
LoopDST :: ST s c → (c → a→ ST s b)→ CCNF ST s a b

The fused observe function:
nth′ST :: Int → CCNF ST s () a→ ST s a
nth′ST n (LoopDST i f) = do
g ← fmap f i
let next n = do x ← g ()

if n 6 0 then return x else next (n − 1)
next n

17/22

Local mutable state via ST Monad

ST Monad in Haskell:
data ST s a = ...
runST :: (forall s . ST s a)→ a
fixST :: (a→ ST s a)→ a

Use ST type as our state:

data CCNF ST s a b where
ArrST :: (a→ b)→ CCNF ST s a b
LoopDST :: ST s c → (c → a→ ST s b)→ CCNF ST s a b

The fused observe function:
nth′ST :: Int → CCNF ST s () a→ ST s a
nth′ST n (LoopDST i f) = do
g ← fmap f i
let next n = do x ← g ()

if n 6 0 then return x else next (n − 1)
next n

17/22

Local mutable state via ST Monad

ST Monad in Haskell:
data ST s a = ...
runST :: (forall s . ST s a)→ a
fixST :: (a→ ST s a)→ a

Use ST type as our state:

data CCNF ST s a b where
ArrST :: (a→ b)→ CCNF ST s a b
LoopDST :: ST s c → (c → a→ ST s b)→ CCNF ST s a b

The fused observe function:
nth′ST :: Int → CCNF ST s () a→ ST s a
nth′ST n (LoopDST i f) = do
g ← fmap f i
let next n = do x ← g ()

if n 6 0 then return x else next (n − 1)
next n

18/22

A (recursively defined) sound synthesis example

shepard :: BufferedCircuit a⇒ Time → a () Double
shepard seconds = if seconds 6 0.0

then arr (const 0.0)
else proc → do
f ← envLineSeg [800, 100, 100] [4.0, seconds]−≺ ()
e ← envLineSeg [0, 1, 0, 0] [2.0, 2.0, seconds]−≺ ()
s ← osc sineTable 0−≺ f
r ← delayLine 0.5 ≪ shepard (seconds − 0.5)−≺ ()
returnA−≺ (e ∗ s ∗ 0.1) + r

Challenges of optimizing a recursively defined arrow:
I Static normalization blows up code size.
I Nested states builds up quickly and deeply.

19/22

Shepard performance (higher is better)

0K

20K

40K

60K

80K

100K

120K

140K

160K

180K

5 7.5 10 12.5 15

O
ut

pu
t R

at
e

(S
am

pl
es

/s
ec

on
d)

Input Size

CCNF CCNF Template Haskell ST

20/22

That is still not all (performance we would like to have)

I The definition of loop requires recursive monad:

instance ArrowLoop (CCNF ST s) where
loop (LoopDST i f) = LoopDST i h

where h i x = do
rec (y , j)← f i (x , j)
return y

I Although in the end all loops are de-coupled, the overhead of ST
type remains in compiled code.

fixST :: (a→ ST s a)→ ST s a
fixST k = ST $ λs →

let ans = liftST (k r) s
STret r = ans

in case ans of STret s ′ x → (# s ′, x #)

21/22

Related work

I Representing arrow computation as data (Hughes 2005,
Nilsson 2005, Yallop 2010)

I Generalized arrows (Joseph 2014)
I Deriving implementation by equational reasoning (Birds

1988, Hinze 2000)
I Free representation used in optimization (Voigtländer 2008,

Kiselyov and Ishii 2015)

22/22

More in the paper

I Normalization by construction in steps.
I Equational derivation of observe function.
I Embedding mutable states with ST monad.
I Proving CCNF ST is an instance of CCA.
I Detailed performance analysis.

https://github.com/yallop/causal-commutative-arrows-revisited

Thank you!

22/22

More in the paper

I Normalization by construction in steps.
I Equational derivation of observe function.
I Embedding mutable states with ST monad.
I Proving CCNF ST is an instance of CCA.
I Detailed performance analysis.

https://github.com/yallop/causal-commutative-arrows-revisited

Thank you!

